节点文献

基于机器学习的镍基单晶高温合金蠕变寿命预测模型研究

Research on Prediction Model of Creep Life of Nickel-based Single Crystal Superalloys Based on Machine Learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杜晓明陆瑶刘纪德

【Author】 DU Xiaoming;LU Yao;LIU Jide;Shenyang Ligong University;Institute of Metal Research, Chinese Academy of Sciences;

【机构】 沈阳理工大学材料科学与工程学院中国科学院金属研究所

【摘要】 构建合适的镍基单晶合金蠕变寿命预测模型,对于我国航空发动机叶片设计、强度分析和寿命预测具有重要意义。采用多项式回归、最近邻回归、支持向量机回归、决策树回归四种机器学习算法,建立镍基单晶高温合金蠕变寿命与合金成分、微观组织和蠕变工艺参数的关系模型,为镍基单晶高温合金的蠕变性能调控提供了新方法。基于蠕变寿命预测模型,系统地比较了四种算法和特征选择对模型性能的影响。结果表明,支持向量机回归模型的预测结果最优,相关性较高的四个特征依次为γ′固溶温度、Ta、W、Re。研究结果可为获得更有效的镍基单晶高温合金蠕变性能预测方法提供参考。

【Abstract】 Building the suitable creep life prediction model of nickel-based single crystal superalloys is of great significance for the design, strength analysis, and life prediction of aircraft engine blades in China.In this paper, four machine learning algorithms are used, including polynomial regression, nearest neighbor regression, support vector machine regression and decision tree regression.The relationship models between the creep life of nickel-based single crystal superallays and the alloy composition, microstructure and creep process parameters are established, which provide a new method for the control of creep properties of nickel-based single-crystal superalloys.Based on the creep life prediction model, the effects of algorithm selection and feature selection on the comprehensive performance of the model are systematically compared.The results show that the SVR regression model has the best prediction, and the four features with relatively high correlations are in order as follows: γ′solution temperature, Ta, W,and Re.The research results can provide a reference for the prediction method of nickel-based single crystal superalloys with more effective creep properties.

【基金】 国家自然科学基金项目(12375305);辽宁省应用基础研究计划项目(2023JH2/101300233);辽宁省教育厅高等学校基本科研项目(JYTZD20230004)
  • 【文献出处】 沈阳理工大学学报 ,Journal of Shenyang Ligong University , 编辑部邮箱 ,2025年01期
  • 【分类号】TG132.3;TP181
  • 【下载频次】238
节点文献中: 

本文链接的文献网络图示:

本文的引文网络