节点文献
基于迁移学习的安达曼海内孤立波传播速度反演研究
A Inversion Study of Internal Solitary Wave Propagation Speed Based on Transfer Learning in the Andaman Sea
【摘要】 内孤立波(internal solitary waves, ISWs)的传播速度是表征其能量大小的基本参数之一,而利用光学遥感影像反演ISWs传播速度更是关键技术。利用光学仿真实验和光学遥感观测的方法建立了两个ISW数据集,包括1 581个实验室物理仿真(laboratory physics simulation, LPS)数据样本和568个遥感数据样本。为了有效地利用LPS数据,本文开发了一个迁移学习模型来反演安达曼海ISWs传播速度,模型基本结构为残差神经网络(residual neural network, Res-net)。迁移过程如下:首先使用LPS数据训练模型,然后利用遥感数据对预训练模型进行微调,直至模型拟合。速度反演模型表现出良好的准确性,在测试集上的均方根误差(RMSE)(平均相对误差(MRE))为0.19 m/s(7.7%),在浅水和深水两种模式下的RMSE(MRE)分别为0.18 m/s(8.1%)和0.20 m/s(7.2%),可以很好地适应深水和浅水,具有普适性。将此模型应用于安达曼海域的单景遥感图像,根据601个ISWs样本的反演结果,模型预测的ISWs传播速度和水深的关系具有较强的相关性,并且随阴历日呈现双峰分布,在大潮期达到峰值。
【Abstract】 The propagation speed of internal solitary waves(ISWs) is one of the fundamental parameters that characterizes their energy, and the inversion of ISWs propagation speed using optical remote sensing images is a key technique. Two datasets of ISWs were established using optical simulation experiments and optical remote sensing observations, including 1 581 samples from laboratory physics simulations(LPS) and 568 samples from remote sensing data. To effectively use the LPS data, we developed a transfer learning model to invert the propagation speed of ISWs in the Andaman Sea, with a basic structure of a residual neural network(Res-net). The transfer process involves training the model with the LPS data first and then fine-tuning it with the remote sensing data. The speed inversion model demonstrates good accuracy with an RMSE(MRE) of 0.19 m/s(7.7%) on the test set, with RMSE(MRE) of 0.18 m/s(8.1%) and 0.20 m/s(7.2%) in shallow water and deep water modes respectively, indicating its versatility in both shallow and deep waters. Applying this model to single-scene remote sensing images in the Andaman Sea, the inversion results of 601 ISW samples show a strong correlation between the predicted ISW propagation speed and water depth, with a bimodal distribution that reaches its peak during spring tides.
【Key words】 internal solitary waves; propagation speed inversion; optical remote sensing images; laboratory physics simulation; transfer learning;
- 【文献出处】 中国海洋大学学报(自然科学版) ,Periodical of Ocean University of China , 编辑部邮箱 ,2025年03期
- 【分类号】TP18;P731.2
- 【下载频次】50