节点文献
基于LSTM的油泥模型侧窗区域风噪主动噪声控制
Active Noise Control for Clay Model Side Window Wind Noise Based on LSTM
【摘要】 汽车在高速公路上行驶时,有必要降低侧窗区域的风噪声。汽车风噪的低频噪声控制可通过主动噪声控制(active noise control,ANC)实现,因此本文提出一种汽车风噪的主动噪声控制方法(active wind noise cancellation, AWNC),并针对侧窗区域的输入信号选取合适的参考信号:侧窗振动信号作为参考信号在100~500 Hz频段内与目标噪声的相干性较好。以风洞试验中整车全尺寸油泥模型为研究对象,通过长短期记忆方法(long shortterm memory,LSTM)优化选取风噪声的参考信号,再利用FxLMS算法对优选后的参考信号进行AWNC仿真并完成硬件在环试验验证。结果表明:经过优选的参考信号不仅数量减少节约成本,且优选后的参考信号将风噪峰值频段降低了5~15 dB。
【Abstract】 When driving on highways, it’s necessary to reduce wind noise in the side window areas of a vehicle. Low-frequency noise control of automobile wind noise can be achieved through Active Noise Control(ANC).Therefore, an Active Wind Noise Cancellation(AWNC) method for automobile wind noise is proposed in this paper.The suitable input signal of the side window area is selected as the reference signal, which shows good coherence with the target noise in the 100-500 Hz frequency range. Taking a full-scale clay model of the vehicle in a wind tunnel as the research object, the reference signals for wind noise are optimized through the Long Short-Term Memory(LSTM) method. The optimized reference signals are then processed using the FxLMS algorithm for AWNC simulation and validated through hardware dSPACE testing. The results show that the optimized reference signals not only reduce the number of sensors needed, thus saving cost, but also decrease the peak frequency band of wind noise by 5-15 dB.
【Key words】 reference signal optimization; LSTM; active wind noise control; clay model; wind tunnel experiments;
- 【文献出处】 汽车工程 ,Automotive Engineering , 编辑部邮箱 ,2025年01期
- 【分类号】U467.493;TP183
- 【下载频次】59