节点文献

基于ViT-B深度学习模型的口腔良恶性病变图像分类研究

Research on Classification of Benign and Malignant Oral Lesions Using ViTB-Deep Learning Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 崔宇琛谢元栋吴聿淼牛凌霄常路广达朱宪春

【Author】 CUI Yuchen;XIE Yuandong;WU Yumiao;NIU Lingxiao;CHANG Luguangda;ZHU Xianchun;Department of Orthodontics, Hospital of Stomatology, Jilin University;Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling;Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University;

【通讯作者】 朱宪春;

【机构】 吉林大学口腔医院正畸科吉林大学牙发育与颌骨重塑吉林省重点实验室吉林大学口腔医院颌面外科

【摘要】 目的:基于深度学习算法,对ViT-B模型检测口腔良性和恶性病变图像的性能进行分析,旨在为临床医生早期发现和准确诊断口腔癌提供有效工具。方法:使用包含口腔良性和恶性病变图像的公共数据集,对数据进行预处理和数据增强,按7∶2∶1的比例将数据随机划分为训练集、验证集和测试集。选取ViT-B、VGG16、ResNet101、DenseNet121和EfficientNetV2 5种深度学习模型,对模型进行训练和性能比较。通过外部数据对ViT-B模型的泛化能力进行评估,并基于注意力权重的可视化方法对ViT-B模型进行分析。结果:ViT-B在5种模型中分类性能最佳,受试者工作特征曲线下面积为0.9715,准确率为91.00%。该模型可以有效区分口腔良性和恶性病变图像,具有较强的泛化能力和临床实用性。结论:ViT-B模型在口腔良性和恶性病变图像识别中表现良好,可以为口腔癌的早期发现和准确诊断提供支持。

【Abstract】 Objective: To analyze the performance of ViT-B model in detecting oral benign and malignant lesions based on deep learning algorithms. Methods: A public dataset containing images of oral benign and malignant lesions was used, with preprocessing and data augmentation applied. The data was randomly divided into training, validation, and test sets in a 7∶2∶1 ratio. Five deep learning models, including ViT-B, VGG16, ResNet101, DenseNet121, and EfficientNetV2, were selected for training and evaluation. The generalization ability of the ViT-B model was evaluated using external data, and the model was analyzed based on the visualization of attention weights. Results: The ViT-B model demonstrated the best performance among five models, with an area under the receiver operating characteristic curve(AUC) of 0.9715 and an accuracy of 91.00%. The model effectively distinguished between images of oral benign and malignant lesions, demonstrating strong generalization ability and clinical applicability. Conclusion: The ViT-B model performs well in the recognition of oral benign and malignant lesions, supporting the early detection and accurate diagnosis of oral cancer.

【关键词】 口腔癌口腔病变深度学习ViT-B
【Key words】 oral canceroral lesionsdeep learningViT-B
【基金】 吉林省科技厅自然科学基金项目(编号:YDZJ202201ZYTS057)
  • 【文献出处】 口腔医学研究 ,Journal of Oral Science Research , 编辑部邮箱 ,2025年01期
  • 【分类号】TP18;TP391.41;R739.8
  • 【下载频次】78
节点文献中: 

本文链接的文献网络图示:

本文的引文网络