节点文献

基于HBA-SVR混合模型的斜式轴流泵变角性能预测

Variable Angle Performance Prediction of a Slanted Axial-flow Pump Based on HBA-SVR Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郑海生周佩剑肖刚牟介刚项春钱亨

【Author】 ZHENG Haisheng;ZHOU Peijian;XIAO Gang;MOU Jiegang;XIANG Chun;QIAN Heng;College of Metrology and Testing Engineering , China Jiliang University;College of Mechanical Engineering, Zhejiang University of Technology;Zhejiang University of Water Resources and Electric Power;

【通讯作者】 周佩剑;

【机构】 中国计量大学计量测试工程学院浙江工业大学机械工程学院浙江水利水电学院

【摘要】 针对斜式轴流泵不同叶片角度下性能曲线获取难、耗费成本高的问题,提出了基于混合蝙蝠算法-支持向量回归模型(HBA-SVR)斜式轴流泵性能预测方法。在标准蝙蝠算法中加入方向加速策略和变异策略优化支持向量回归,利用斜30°轴流泵运行数据训练模型,并应用于斜式轴流泵变角性能预测。扬程、效率平均相对误差分别为1.49%、0.41%,收敛时间分别为15.47 s、18.78 s,相较于标准蝙蝠优化支持向量回归预测结果,收敛时间分别减少了122.11%、103.62%。对比PSO、GA、BA优化SVR,扬程预测误差分别降低了29.53%,70.46%,131.54%,效率预测误差分别降低了7.31%,9.75%,19.51%。结果表明所提出模型能快速、有效预测斜式轴流泵变角性能。

【Abstract】 To address the difficulty and cost associated with obtaining performance curves for different blade angles, a performance prediction method for slanted axial-flow pump based on the hybrid HBA-SVR model is proposed. The standard bat algorithm is enhanced with directional acceleration and variation strategies to optimize the SVR. The model is trained by using the operating data of the 30° slanted axial-flow pump, and applied to the variable angle performance prediction of the slanted axial-flow pump. The average relative errors for head and efficiency are reduced to 1.49% and 0.41%respectively, with convergence times of 15.47 s and 18.78 s. When compared to the results of standard bat optimization support vector regression prediction, the convergence times are reduced by 122.11% and 103.62% respectively. Moreover, compared to PSO, GA, and BA optimized SVR, the head prediction errors are reduced by 29.53%, 70.46%, and 131.54% respectively, and the efficiency prediction errors are reduced by 7.31%, 9.75%, and 19.51% respectively. The results indicate that the proposed model effectively predicts the variable angle performance of slanted axial-flow pump.

【基金】 中国博士后科学基金面上资助项目(2022M712816);浙江省公益技术研究计划/工业(LGG21E090003);浙江省“尖兵”“领雁”研发攻关计划(2023C01022,2022C02035)
  • 【文献出处】 计量学报 ,Acta Metrologica Sinica , 编辑部邮箱 ,2025年02期
  • 【分类号】TH312
  • 【下载频次】15
节点文献中: 

本文链接的文献网络图示:

本文的引文网络