节点文献

无袖带血压测量的深度学习算法设计与性能评估

Design and performance evaluation of deep learning algorithm for cuffless blood pressure measurement

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘高峰沈永良

【Author】 LIU Gaofeng;SHEN Yongliang;School of Electronic Engineering,Heilongjiang University;

【通讯作者】 沈永良;

【机构】 黑龙江大学电子工程学院

【摘要】 对血压进行连续监测,能够有效预防心血管疾病,袖带式血压测量无法对血压进行连续的测量。提出一种基于深度学习的无袖带血压测量模型,使用卷积神经网络(Convolution neural network, CNN)和Croos former网络搭建无袖带血压测量模型,利用脉搏波信号(Photoplethysmograph, PPG)和心电信号(Electrocardiosignal, ECG)作为模型的输入,用于测量血压。该模型能够捕捉生理信号跨维度和跨时间的依赖关系,以此准确、连续的测量血压。模型使用BP-Net数据集进行训练、验证与测试,其中预测舒张压(Diastelic blood pressure, DBP)的平均绝对误差(Mean absolute error, MAE)为1.12 mmHg,标准差(Standard deviation, STD)为1.56 mmHg;收缩压(Systolic blood pressure, SBP)的MAE为2.02 mmHg, STD为2.79 mmHg。该模型的预测结果达到了美国医疗仪器促进协会(AAMI)的标准和英国高血压协会(BHS)的A级水平。

【Abstract】 Continuous monitoring of blood pressure can effectively prevent cardiovascular diseases. However, cuff-based blood pressure measurement is incapable of conducting continuous measurements. Therefore, a deep learning-based cuffless blood pressure measurement method is proposed, constructing a blood pressure measurement model using convolutional neural network and crossformer networks, with photoplethysmogram(PPG) and electrocardiogram(ECG) signals as model inputs for blood pressure estimation. This model can capture the cross-dimensional and cross-temporal dependencies of physiological signals, thereby enabling accurate and continuous blood pressure measurement. The model was trained, validated, and tested on the BP-Net dataset. The average absolute error(MAE) for predicting diastolic blood pressure(DBP) was 1.12 mmHg, with a standard deviation(STD) of 1.56 mmHg; the MAE for systolic blood pressure(SBP) was 2.02 mmHg, and the(STD) was 2.79 mmHg. The prediction results of this model have reached the standards of the Association for the Advancement of Medical Instrumentation(AAMI) in the United States and level A of the British Hypertension Society(BHS).

【关键词】 无袖带血压测量PPGECG深度学习
【Key words】 cuffless blood pressure measurementPPGECGdeep learning
【基金】 国家自然科学基金项目(61503127);黑龙江省自然科学基金项目(LH2020F046)
  • 【文献出处】 黑龙江大学工程学报(中英俄文) ,Journal of Engineering of Heilongjiang University , 编辑部邮箱 ,2025年01期
  • 【分类号】TP18;R443.5
  • 【下载频次】62
节点文献中: 

本文链接的文献网络图示:

本文的引文网络