节点文献
融合注意力机制的轻量级猪体质量实时估计方法
Lightweight real-time pig weight estimation method with attention mechanism
【摘要】 为了在资源有限的移动设备上对猪体质量进行准确和实时估计,提出了融合注意力机制的轻量级猪体质量实时估计方法,该方法分为分割阶段和体质量估计阶段。在分割阶段,为了能更准确地获得猪躯干分割图像,提出了边缘引导的轻量级分割网络EG-YOLO。在体质量估计阶段,为了更好地融合双视角特征用于体质量估计,基于改进的轻量级MobileNeXt子网络,构建了双视角特征融合的轻量级体质量估计网络,并在自建的猪体质量估计数据集上进行实验。结果表明,体质量估计的误差仅为3.99%。
【Abstract】 In order to achieve accurate and real-time pig weight estimation on resource-constrained mobile devices, a lightweight pig weight real-time estimation methocls was proposed, which consisted of a segmentation stage and a weight estimation stage. In the segmentation stage, an edge-guided lightweight segmentation network, named EG-YOLO, was presented to obtain more accurate segmentation images of the pig body. In the weight estimation stage, to better fuse dual-view features for weight estimation, a lightweight weight estimation network with dual-view feature fusion was constructed based on an improved lightweight MobileNeXt sub-network. Experimental results on a self-built pig weight estimation dataset show that the weight estimation error is only 3.99%.
【Key words】 weight estimation; edge-guided; attention mechanism; feature fusion;
- 【文献出处】 广西大学学报(自然科学版) ,Journal of Guangxi University(Natural Science Edition) , 编辑部邮箱 ,2025年01期
- 【分类号】S828;TP391.41
- 【下载频次】8