节点文献

基于时序预测的复合型污水厂水质异常预警研究

Study on Anomaly Warning for Water Quality in Domestic-industrial Integrated Wastewater Treatment Plant Based on Time Series Forecasting

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 舒垚荣陈聆昊何洋林晓宇吴天明宋梦婕张文陆谢娟昝飞翔毛娟吴晓晖

【Author】 SHU Yaorong;CHEN Linghao;HE Yang;LIN Xiaoyu;WU Tianming;SONG Mengjie;ZHANG Wen;LU Xiejuan;ZAN Feixiang;MAO Juan;WU Xiaohui;Institute of Artificial Intelligence, Huazhong University of Science and Technology;School of Environmental Science and Engineering, Huazhong University of Science and Technology;Yangtze Ecology and Environment Co., Ltd.;

【通讯作者】 毛娟;吴晓晖;

【机构】 华中科技大学人工智能研究院华中科技大学环境科学与工程学院长江生态环保集团有限公司

【摘要】 针对工业废水-生活污水复合型污水厂由于突发水污染事件而导致污水厂工艺冲击负荷大、达标排放有风险等问题,该研究以湖北省某复合型污水处理厂为研究对象,利用自回归移动平均(ARIMA)算法构建进水水质预测及异常预警模型;结合自回归(ACF)、偏自回归(PACF)和增强迪基-富勒测试(ADF)分别确定化学需氧量、氨氮、总氮、总磷预测模型的最佳参数,优化水质预测模型,并探究不同监测频率和预测步长对模型的影响;在此基础上,选择自编码器(AE)和K-邻近值(KNN)算法构建水质预警模型,实现了水质的异常预警。该研究不仅为污水厂提前应对突发水污染事件提供科学依据,同时也为污水处理厂智能化转型奠定理论基础。

【Abstract】 Domestic-industrial integrated wastewater treatment plants often face significant operational challenges and risks of non-compliant discharge due to emergency pollution incidents. Focusing on a wastewater treatment plant located in a satellite city in Hubei Province, China, the autoregressive integrated moving average(ARIMA) algorithm was employed to develop a model for influent water quality prediction. The optimal parameters for predicting chemical oxygen demand, ammonia nitrogen, total nitrogen, and total phosphorus were determined using autocorrelation function(ACF), partial autocorrelation function(PACF), and augmented Dickey-Fuller(ADF) tests, leading to the optimization of the prediction model. Besides, the impact of different monitoring frequencies and prediction intervals were investigated. Additionally, autoencoder(AE) and K-nearest neighbors(KNN) algorithms were utilized to construct a water quality warning model, effectively enabling anomaly detection. This research not only provides a scientific basis to respond to emergency events but also lays a theoretical foundation for the intelligent transformation of traditional wastewater treatment plants.

【基金】 国家重点研发计划项目(2023YFC3207201);长江生态环保集团有限公司科研项目(HBHB2022018)
  • 【文献出处】 环境科学与技术 ,Environmental Science & Technology , 编辑部邮箱 ,2025年01期
  • 【分类号】X703;TU992.3
  • 【下载频次】54
节点文献中: 

本文链接的文献网络图示:

本文的引文网络