节点文献

知识增强的中文金融大模型研究

Research on knowledge-augmented Chinese financial large language model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 程大伟贾仁军李江彤丁志军蒋昌俊

【Author】 CHENG Dawei;JIA Renjun;LI Jiangtong;DING Zhijun;JIANG Changjun;College of Computer Science and Technology, Tongji University;Shanghai Artificial Intelligence Laboratory;National Collaborative Innovation Center for Internet Financial Security;

【通讯作者】 蒋昌俊;

【机构】 同济大学计算机科学与技术学院上海人工智能实验室国家级网络金融安全协同创新中心

【摘要】 金融行业长期以来面临海量市场数据与信息的处理难题。当前,大语言模型在通用文本理解任务上取得了显著进展,但在专业性更强的中文金融领域还有较大的提升空间。针对当前大语言模型在处理专业领域文本任务上的不足,提出基于知识增强的继续预训练和监督微调的两阶段训练方法,并改进了训练数据的组织形式和训练范式,从而提升模型在复杂金融场景下的性能。最后,通过实验验证了提出的知识增强方法在大模型训练中的有效性。

【Abstract】 The financial industry has long faced challenges in processing vast amounts of market data and information. Currently,large language models have made significant progress in general text understanding tasks, but there is still considerable room for improvement in more specialized domains, such as Chinese finance. To address the limitations of current large language models in handling professional domain-specific text tasks, a two-stage training approach based on finance knowledge-enhanced continued pre-training and supervised fine-tuning is designed. This approach improves the organization of training data and the training paradigm, thereby enhancing the model’s capabilities in complex financial scenarios. Finally, experiments have validated the effectiveness of the proposed knowledge-enhanced approach in large model training.

【基金】 国家重点研发计划项目(No.2022YFB4501704);国家自然科学基金项目(No.62102287,No.62472317);上海市科技创新行动计划项目(No.22YS1400600,No.24692118300)~~
  • 【分类号】F832;TP391.1
  • 【下载频次】60
节点文献中: 

本文链接的文献网络图示:

本文的引文网络