节点文献
2006—2020年长江三角洲地区大气SO2浓度时空分布研究
Spatio-temporal variations of atmospheric SO2 concentrations in the Yangtze River Delta from 2006 to 2020
【摘要】 OMI(Ozone Monitoring Instrument)SO2柱浓度数据的有效性已在多个地区得到验证,但其空间分辨率难以满足小尺度区域研究的精度需求。该文基于多尺度地理加权回归(MGWR)模型,耦合气象、夜间灯光和植被覆盖度等数据,将OMI SO2浓度数据分辨率由0.25°降尺度到1 km,进而探讨2006—2020年长江三角洲地区大气SO2浓度的时空变化特征及驱动因素。研究表明:降尺度后的大气SO2浓度数据与站点监测值具有较高一致性(R2=0.74,RMSE=5.29μg/m3);长江三角洲地区大气SO2浓度空间异质性显著,值域范围为2.87~35.67μg/m3,高值主要分布在北部和中部地区;局地尺度上,大气SO2浓度自城区向周围递减;2006—2020年大气SO2浓度呈显著下降趋势,污染严重地区降速更快,冬季下降速率(1.08μg/m3/a)高于全年(0.68μg/m3/a)。研究结果可为不同区域制定差异化的SO2减排政策提供参考。
【Abstract】 The validity of OMI(Ozone Monitoring Instrument) SO2 data has been verified in many areas.However, its spatial resolution fails to meet the precision requirements for studying the spatiotemporal distribution patterns in small-scale areas.Utilizing the multi-scale geographically weighted regression(MGWR) method, this paper integrated high-resolution meteorological data, nighttime light and vegetation cover datasets to spatially downscale the OMI SO2 data, thereby investigating the spatiotemporal characteristics and driving factors of atmospheric SO2 in the Yangtze River Delta.The results revealed that the SO2 concentrations after data downscaling showed high consistency with the ground monitoring values(R2=0.74,RMSE=5.29 μg/m3).The study revealed significant spatial heterogeneity of the atmospheric SO2 concentrations in the Yangtze River Delta, with values ranging from 2.87 μg/m3 to 35.67 μg/m3,and higher concentrations mainly distributed in the northern and central areas.At the fine scale, the atmospheric SO2 concentrations showed a decreasing trend from urban areas to surrounding areas, offering more detailed information compared to the 0.25° resolution OMI SO2 data.From 2006 to 2020,there was a notable decline in the SO2 concentrations, showing that the average decline rate in winter(1.08 μg/m3/a) was higher than the annual average(0.68 μg/m3/a).The decline of the atmospheric SO2 concentrations was faster in heavily polluted areas.This study can provide a scientific basis for formulating differentiated SO2 emission reduction policies in different regions.
【Key words】 atmospheric SO2; spatial downscaling; spatial and temporal distribution; the Yangtze River Delta;
- 【文献出处】 地理与地理信息科学 ,Geography and Geo-Information Science , 编辑部邮箱 ,2025年01期
- 【分类号】X87;X831
- 【下载频次】27