节点文献

Cs2F5Li3对Li2S吸附的第一性原理计算

First-Principles Calculations of Absorption Properties of Cs2F5Li3 to Li2S

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王梦祥许家鑫覃田鑫刘芯佚肖承杰刘正堂刘其军蒋城露

【Author】 Wang Mengxiang;Xu Jiaxin;Qin Tianxin;Liu Xinyi;Xiao Chengjie;Liu Zhengtang;Liu Qijun;Jiang Chenglu;College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University;School of Materials Science and Engineering, Northwestern Polytechnical University;School of Physical Science and Technology, Southwest Jiaotong University;

【通讯作者】 蒋城露;

【机构】 四川农业大学水利水电学院西北工业大学材料学院西南交通大学物理科学与技术学院

【摘要】 锂硫电池(LSBs)具有超高的理论能量密度和低成本的阴极材料。然而,LSBs的循环使用会产生多硫化物(Li PSs),出现严重的“穿梭效应”,导致电池高度极化,电池性能受损,甚至产生安全问题,使得LSBs的应用仍然极具挑战性。本工作针对“穿梭效应”问题,利用结合能讨论了材料Cs2F5Li3对Li2S的吸附能力,即抑制其“穿梭”的能力。基于密度泛函理论的第一性原理方法,通过CASTEP软件对Cs2F5Li3与Li2S进行了模拟计算,得到Cs2F5Li3对Li2S的结合能为–2.53 e V。为了探究吸附的机理,计算分析了体相Cs2F5Li3、体相Li2S、Li2S(100)、Cs2F5Li3(001)以及Cs2F5Li3(001)-Li2S(100)的基本性质、电子结构和电荷转移。结果表明,结合能是由两切面结合后,F 2p和Li 1s2s、S 3p和Li 1s2s形成的离子键,S 3p和F 2p之间形成的共价键,与体系内键的弛豫交换能量提供。切面后,Cs2F5Li3(001)比Cs2F5Li3有更强的化学活性,Li2S晶体由半导体性向金属性转变,Cs2F5Li3(001)-Li2S(100)体系金属性增加,导电性能更强,光电效应比Cs2F5Li3(001)更强。吸附能计算结果表明Cs2F5Li3能够抑制因Li2S的扩散而带来的“穿梭效应”,有利于缓解Li2S导致的LSBs反应动力学缓慢、活性低、电池容量下降等问题,对提高锂硫电池的性能具有较强的理论参考价值。

【Abstract】 Lithium-sulfur batteries(LSBs) have extremely high theoretical energy density and low-cost cathode materials. However, the recycling of LSBs will produce polysulfides(Li PSs), which has a serious “shuttle effect”, resulting in highly polarized batteries, impaired battery performance, and even safety issues, and making the application of LSBs still extremely challenging. In this work, the binding energy of was used to discuss the absorption capacity of Cs2F5Li3 to Li2S, i.e., the ability to inhibit its “shuttle effect”. Based on the first-principles method of density functional theory, Cs2F5Li3 and Li2S were simulated by CASTEP software, and the binding energy of Cs2F5Li3 to Li2S is – 2.53 e V. In order to explore the mechanism of adsorption, the basic properties, electronic structures, and charge transfer of Cs2F5Li3 and Li2S bulk phases, Li2S(100), Cs2F5Li3(001), and Cs2F5Li3(001)-Li2S(100) were used for analysis. The results show that the binding energy is provided by the ionic bond between F 2p and Li 1s2s as well as S 3p and Li 1s2s, the covalent bond between S 3p and F 2p, and the relaxation exchange energy of the bonds in the system. After the section, Cs2F5Li3(001) has stronger chemical activity than Cs2F5Li3, and Li2S crystal changes from semiconductor property to metallic property. The metallic property of Cs2F5Li3(001)-Li2S(100) system improves, electrical conductivity is stronger, and photoelectric effect is stronger than that of Cs2F5Li3(001). The adsorption energy calculation results show that Cs2F5Li3 can inhibit the “shuttle effect” caused by the diffusion of Li2S, which is conducive to alleviate the problems such as slow reaction kinetics, low activity, and reduced battery capacity caused by Li2S, and it has a strong theoretical reference value for improving the performance of LSBs.

  • 【文献出处】 稀有金属材料与工程 ,Rare Metal Materials and Engineering , 编辑部邮箱 ,2025年01期
  • 【分类号】TM912;O469;O647.3
  • 【下载频次】63
节点文献中: 

本文链接的文献网络图示:

本文的引文网络