节点文献
基于紫外氪灯模型的等离子体放电物理特性研究
Investigation of Plasma Discharge Physical Characteristics Based on a UV Krypton Lamp Model
【摘要】 介质阻挡放电技术是智能检测领域重要的检测技术之一,等离子体放电腔体是实现介质阻挡放电技术的重要组成部分。由于腔体内的放电过程涉及复杂的物理和化学反应,目前研究等离子体内部参数的变化过程存在一定的难度。以氪气为研究对象,基于氪原子能级跃迁原理,采用仿真软件构建了介质阻挡放电的紫外氪灯结构模型,该模型通过仿真软件等离子体分析单元中的瞬态求解器模拟了氪气放电下的等离子体物理特性。在相同的压强下,分析了400、800、1 200 V放电电压对特定粒子数密度的影响,通过特定能级状态粒子数密度表征了粒子光强,获得了在1 200 V、760 Torr(1 Torr=133.3 Pa)环境下模型内部放电区域的电势和电子密度以及正离子密度的分布。仿真结果揭示了气体放电强度和电压具有正相关关系,对介质阻挡等离子体放电技术的基础研究和模型设计具有指导意义。
【Abstract】 Dielectric barrier discharge technology is one of the important detection technologies in the field of intelligent detection, and the plasma discharge cavity is an important part to realize the dielectric barrier discharge technology. Because the discharge process inside the cavity involves complex physical and chemical reactions, it is currently difficult to study the change process of the internal parameters of the plasma. Taking krypton gas as the research object, based on the principle of krypton atomic energy level transition, the structural model of ultraviolet krypton lamp with dielectric barrier discharge was established by using the simulation software. The model simulated the physical properties of the plasma under krypton gas discharge through the transient solver in the plasma analysis unit of simulation software. At the same pressure, the effects of 400, 800 and 1 200 V discharge voltages on the number densities of specific particles were analyzed, and the particle light intensity was characterized by the number densities of particles in specific energy level states. The distributions of electric potential, electron density and positive ion density in the model internal discharge region at 1 200 V, 760 Torr(1 Torr=133.3 Pa) were obtained. The simulation results reveal a positive correlation between the gas discharge intensity and voltage, which has guiding significance for the basic research and model design of dielectric barrier plasma discharge technology.
【Key words】 ultraviolet lamp; energy level transition; dielectric barrier discharge; krypton gas; plasma;
- 【文献出处】 微纳电子技术 ,Micronanoelectronic Technology , 编辑部邮箱 ,2025年01期
- 【分类号】O53;O461
- 【下载频次】38