节点文献

高密度电法在铅锌矿老窑采空区探测中的应用

Application of High-Density Electrical Method in the Detection of Hidden Goaf in Lead-Zinc Mines

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 柳位韩世礼谭凯旋邓梓翔肖健谢凡刘明星

【Author】 LIU Wei;HAN Shili;TAN Kaixuan;DENG Zixiang;XIAO Jian;XIE Fan;LIU Mingxing;School of Resources Environment and Safety Engineering, University of South China;Hunan Key Laboratory of Rare Metal Mineral Exploitation and Geological Disposal of Wastes;

【通讯作者】 谭凯旋;

【机构】 南华大学资源环境与安全工程学院湖南省稀有金属矿产开发与废物地质处置技术重点实验室

【摘要】 本文以研究区老窑采空区探测为例,选择高密度电法作为主要探测手段,实施了3条物探测量剖面,通过地表布置大量电极,详细描绘地下电性结构,从而推断出采空区的位置和特征。研究结果显示,所有推断出的采空区均表现为高电阻异常,推测为无积水采空区,通过数据反演解译,成功推断出10个采空区的位置、规模及特征,根据已有的矿体产出形态,估算采空区平面投影面积为3 817 m~2、总体积为22 370 m~3。基于探测结果,对各采空区的危险性进行了评估,特别指出了部分无积水未充填采空区可能存在地陷风险。

【Abstract】 In this paper, taking the detection of the goaf in the study area as an example, the high-density electric method is selected as the main detection method, and three geophysical survey profiles are implemented, and a large number of electrodes are arranged on the surface to describe the underground electrical structure in detail, so as to infer the location and characteristics of the goaf. The results of this study showed that all inferred goaf areas exhibited high electrical resistivity anomalies and were speculated to be goaf areas without water accumulation. Through data inversion and interpretation, the positions, scales, and characteristics of 10 goaf areas were successfully inferred. Based on the existed ore body production forms, the projected area of the goaf plane was estimated to be 3 817 m~2 and the total volume to be 22 370 m~3. Based on the detection results, the danger of each goaf was evaluated, and it was specifically pointed out that there may be a risk of subsidence in some unfilled goafs without water accumulation.

【基金】 湖南省自然科学基金项目(2023JJ30506);湖南省大学生研究性学习和创新性实验计划项目(220XCX358)
  • 【文献出处】 南华大学学报(自然科学版) ,Journal of University of South China(Science and Technology) , 编辑部邮箱 ,2024年03期
  • 【分类号】TD325.3;P631.3
  • 【下载频次】5
节点文献中: 

本文链接的文献网络图示:

本文的引文网络