节点文献

基于集成计算材料工程的新型碳化铀核燃料设计

Accelerating the Development of Advanced Uranium Carbide Nuclear Fuels Based on Integrated Computational Materials Engineering

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李佳王毅陆永洪高兴誉宋海峰李金山

【Author】 LI Jia;WANG Yi;LU Yonghong;GAO Xingyu;SONG Haifeng;LI Jinshan;State Key Laboratory of Solidification Processing, Northwestern Polytechnical University;Innovation Center,NPU Chongqing;Nuclear Power Institute of China;Institute of Applied Physics and Computational Mathematics;

【通讯作者】 王毅;

【机构】 西北工业大学凝固技术国家重点实验室西北工业大学重庆科创中心中国核动力研究设计院北京应用物理与计算数学研究所

【摘要】 极端条件下的材料物性对于新一代装备关重部件金属材料的优化设计和效能评估至关重要。但是,极端环境实验测量昂贵、复杂,不确定性因素较多,仅仅依靠实验难以系统全面地评估材料的物性参数。因此,迫切需要发展极端条件下高通量、多尺度的集成计算材料工程关键技术。多元碳化物作为一类新型核燃料,因其高熔点、高硬度、高温稳定等优异的物理化学性能受到国内外极大的关注。通过高通量第一性原理计算对(UNb)C、(UZr)C和(UTa)C的热力学性质进行了系统研究,基于极端材料集成计算平台(ProME)局域化学环境近似方法(SAE)和平均场势(MFP~2)方法,进行了多组元体系建模和热力学特性的计算。揭示了不同掺杂元素对体积模量、熵、吉布斯自由能、晶格热导率等基础物性的作用规律,为新型核燃料的成分设计提供了重要数据参考。

【Abstract】 The physical properties of materials under extreme conditions are critical for the optimal design and performance evaluation of metallic materials for critical components of new generation equipment. However, experimental measurements in extreme environments are expensive, complex, and uncertain, making it difficult to assess the physical parameters of materials systematically and comprehensively by experiment alone. Therefore, there is an urgent need to develop key technologies for integrated computational materials engineering with high throughput and multiple scales under extreme conditions. As a new class of nuclear fuels, polycarbon has received great attention at home and overseas for their excellent physicochemical properties, such as high melting point, ultra hardness and high-temperature stability. In the current work, the thermodynamic properties of(UNb)C,(UZr)C and(UTa)C were systematically investigated by high-throughput first-principles calculations. The modelling and thermodynamic properties of multi-component systems were carried out, using the similar atomic environment(SAE) and mean-field-potential(MFP~2) methods based on the Professional Materials at Extreme(ProME) platform. The role of different doping elements on the fundamental physical properties, such as bulk modulus, entropy, Gibbs free energy and lattice thermal conductivity, was revealed, which provides important data reference for the compositional design of new nuclear fuels.

  • 【文献出处】 智能安全 ,Artificial Intelligence Security , 编辑部邮箱 ,2024年02期
  • 【分类号】TL27
  • 【下载频次】1
节点文献中: 

本文链接的文献网络图示:

本文的引文网络