节点文献

一种基于改进MaskRCNN的纸病诊断算法

An Improved MaskRCNN Based Paper Disease Diagnosis Algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 汤伟刘英伟王孟效耿志遥刘常闯杨亦君

【Author】 TANG Wei;LIU Yingwei;WANG Mengxiao;GENG Zhiyao;LIU Changchuang;YANG Yijun;College of Electrical and Control Engineering,Shaanxi University of Science & Technology;Shaanxi Xiwei Process Automation Engineering Co.,Ltd.;

【通讯作者】 刘英伟;

【机构】 陕西科技大学电气与控制工程学院陕西西微测控工程有限公司

【摘要】 本研究提出了一种基于改进MaskRCNN网络的纸病诊断算法。该算法首先在原有的MaskRCNN网络的基础上,使用轻量化头部骨干网络VOVNet和精细化的RoIPooling (PrRoIPooling)对原网络模型进行改进,以减少原网络模型的参数使用量,提升检测分类速度;其次添加空间金字塔注意力机制(SPANet),以解决原网络模型对于小目标检测精确度不高的问题。采集4 000多张纸病图像对本研究提出的算法进行仿真验证。结果表明,改进的MaskRCNN模型比原网络模型在平均精度上提升了3个百分点,速度上提升了15%,能够满足纸病诊断的实时性和准确性的实际需求。

【Abstract】 This paper proposed a paper disease diagnosis algorithm based on an improved MaskRCNN network. Firstly, this algorithm improved the network model by using a lightweight head backbone network VOVNet and a Precise RoIPooling(PrRoIPooling) on the basis of the original MaskRCNN network, in order to reduce the parameter usage of the original network model and improve the detection and classification speed. Secondly, a spatial pyramid attention mechanism(SPANet) was added to address the issue of low accuracy in detecting small objects in the original network model. More than 4 000 paper disease images were collected for simulation verification of the proposed algorithm. The results showed that the improved MaskRCNN model had increased average accuracy by 3 percentage points and speed by 15%compared to the original network model, which could meet the practical requirements of real-time and accuracy in paper disease diagnosis.

【关键词】 纸病诊断MaskRCNNVOVNetPrRoIPoolingSPANet
【Key words】 paper disease diagnosisMaskRCNNVOVNetPrRoIPoolingSPANet
【基金】 国家自然科学基金计划项目(62073206);西安市科技计划项目(2020KJRC0146)
  • 【文献出处】 中国造纸 ,China Pulp & Paper , 编辑部邮箱 ,2024年12期
  • 【分类号】TS77;TP183;TP391.41
  • 【下载频次】34
节点文献中: 

本文链接的文献网络图示:

本文的引文网络