节点文献
基于k-means聚类的核电荷数甄别方法研究
Identification Method for Nuclear Charge Based on k-means Clustering
【摘要】 核工业和裂变理论研究的快速发展,对准确、可靠的裂变碎片核电荷数分布数据的需求不断提高。然而,至今仍没有可靠的方法测定裂变碎片核电荷数分布。为了克服这一难题,提出了利用电离室脉冲波形进行聚类,实现粒子核电荷数甄别的方法。用已知核素(127I,128Xe,129Xe,134Xe和133Cs)不同入射能量粒子在电离室中输出的波形作为数据集,采用过阈定时方法排除粒子入射能量对波形的干扰,然后通过k-means方法进行聚类,成功实现了83%的甄别正确率,优化处理后正确率达到99%,该方法有助于裂变碎片核电荷数分布数据的测量。
【Abstract】 With the rapid development of nuclear industry and fission theory, the demand for accurate and reliable nuclear charge distribution data of fission fragments is increasing. However, there is still no reliable method to determine the nuclear charge distribution of fission fragments. To overcome this problem, a new method to identify the nuclear charge of particles is proposed in this paper by clustering the pulse waveforms of ionization chamber. The waveforms of the incident particles(127I, 128Xe, 129Xe, 134Xe and 133Cs) in the ionization chamber is chosen as the data set, the proper data pre-process and k-means clustering are used to realize 83% discrimination rate, and 99% after optimization. This method is helpful for measuring the nuclear charge distribution of fission fragments.
【Key words】 k-means clustering; waveform analysis; nuclear charge identification; low-pressure grid ionization chamber;
- 【文献出处】 现代应用物理 ,Modern Applied Physics , 编辑部邮箱 ,2024年06期
- 【分类号】TP311.13;TL811.1
- 【下载频次】21