节点文献

基于数据模型的铅冶炼氧化炉原料配比优化

Optimization of raw material ratio for lead smelting oxidation furnace based on data model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 许潇枫陈金水卢建刚张哲铠蔡幼忠李玉珍

【Author】 XU Xiaofeng;CHEN Jinshui;LU Jiangang;ZHANG Zhekai;CAI Youzhong;LI Yuzhen;College of Control Science and Engineering,Zhejiang University;China ENFI Engineering Corporation;Henan Yuguang Gold Lead Co.,Ltd.;

【机构】 浙江大学控制科学与工程学院中国恩菲工程技术有限公司河南豫光金铅股份有限公司

【摘要】 底吹连续处理铅基固废工艺具有多变量、非线性、强耦合、大滞后等特点,基于机理方法进行建模与优化存在困难。对此本文提出了基于数据驱动的熔炼炉原料配料模型,实现关键运行参数的优化控制。首先,基于化验与过程历史数据,使用神经网络建立原料成分与熔炼炉关键工艺指标间的关系模型;在此基础上,应用粒子群搜索算法,由熔炼炉理想工况指标搜索确定原料中各成分的最优配比;最后,将配料问题建模为含非线性约束的多目标优化问题,并使用SLSQP求解。集成上述建模优化算法,开发了相应的熔炼炉原料管理系统。

【Abstract】 The bottom-blowing continuous treatment for lead-based solid waste has the characteristics of multivariability, nonlinearity, strong coupling and large lag, which cause difficulties for mechanism based modelling and optimization. To solve these problems, this paper proposes a data-driven raw material blending model for the smelting furnace, which achieves optimized control for key operating parameters. Firstly, based on laboratory and process historical data, the relationship between raw material composition and key process indicators of the smelting furnace is established by applying neural network; on this basis, the Particle Swarm Optimization algorithm is applied to solve the optimal ratio of each component in the raw material from the ideal operating conditions; finally, the ingredient problem is formulated as a multi-objective optimization problem with nonlinear constraints and then solved by SLSQP. Integrating the above modeling and optimization algorithms, a corresponding raw material management system has been developed.

【基金】 国家重点研发计划-复杂铅基多金属固废协同冶炼技术与大型化装备-协同熔炼过程自适应在线智能优化控制系统(2019YFC1907305)
  • 【文献出处】 有色设备 ,Nonferrous Metallurgical Equipment , 编辑部邮箱 ,2024年05期
  • 【分类号】TF812
  • 【下载频次】11
节点文献中: 

本文链接的文献网络图示:

本文的引文网络