节点文献
电推进GEO卫星的改进粒子群轨道保持优化设计
Improved Particle Swarm Orbit-keeping Optimization Design for GEO Satellite with Electric Propulsion
【摘要】 针对地球同步轨道(GEO)卫星轨道保持问题,提出了一种基于改进粒子群算法(PSO)的序列电推力轨道保持方法。首先,建立了GEO卫星高精度非线性轨道动力学模型和序列电推力模型。然后,设计了GEO卫星相对轨道保持策略,建立了以燃料消耗为性能指标的序列电推力轨道保持问题优化模型并进行了离散化。接着,通过引入差分进化算法和维度学习策略对粒子群优化算法进行了适应性改进,同时对推力大小和作用时间进行寻优计算。最后,通过数值仿真对所提出的改进粒子群优化算法进行了对比校验。结果表明,该方法在完成GEO卫星轨道保持任务的同时具备燃料消耗低和收敛速度快等优点。
【Abstract】 An improved particle swarm optimization(PSO) based sequential electric thrust orbit keeping method for geosynchronous orbit(GEO) satellites is proposed. Firstly, precise nonlinear orbit dynamics model and serial electric thrust model of GEO satellite are established. Next, the relative orbit keeping strategy of GEO satellites is designed, and the optimization model of the sequential electric thrust orbit keeping problem with fuel consumption as the performance index is established and discretized. Then, the differential evolution algorithm and dimension learning strategy are introduced to improve the PSO algorithm to optimize the thrust amplitude and action time simultaneously. Finally, the proposed improved PSO algorithm is compared and verified by numerical simulation. The results show that the proposed method has the advantages of low fuel consumption and fast convergence while completing the GEO satellite orbit maintenance task.
【Key words】 Satellite orbit-keeping; Electric propulsion; Particle swarm optimization; Differential evolution; Dimensional learning;
- 【文献出处】 宇航学报 ,Journal of Astronautics , 编辑部邮箱 ,2024年04期
- 【分类号】V439.4;TP18;V448.2
- 【下载频次】51