节点文献

基于灰度自适应增强的DKDP晶体损伤检测

Damage Detection of DKDP Crystals Based on Grayscale Adaptive Enhancement

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 余健史晋芳邱荣郭德成周磊周强

【Author】 YU Jian;SHI Jinfang;QIU Rong;GUO Decheng;ZHOU Lei;ZHOU Qiang;School of Manufacturing Science and Engineering, Southwest University of Science and Technology;Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology;

【通讯作者】 史晋芳;

【机构】 西南科技大学制造科学与工程学院西南科技大学数理学院极端条件物质特性实验室

【摘要】 在磷酸二氢钾(KDP)及磷酸二氘钾(DKDP)晶体损伤研究中需要对图像中损伤点进行统计,为了解决损伤图像中弱小损伤点的低对比度导致统计不准确的问题,提出一种基于局部直方图灰度自适应增强的损伤点检测方法。首先利用图像差分去除高频背景,然后根据图像中每个像素邻域的灰度与方差和整幅图像的灰度与方差之间的差异性,筛选出待增强像素,并通过邻域最大灰度值与全局最大灰度值得出灰度调节系数,对图像进行自适应增强,最后对增强后的图像进行阈值分割及目标分离。实验结果表明该增强算法可以使弱小损伤点的信噪比得到提升,更利于检测出图像中的弱小损伤点,提高DKDP晶体损伤研究中损伤点统计的准确性。

【Abstract】 In KDP&DKDP crystal damage studies, it is necessary to count the damage points in the image. In order to solve the problem of statistical inaccuracy caused by low contrast of weak damage points in damaged images, damage points detection method based on local histogram grayscale adaptive enhancement was proposed. Firstly, the high-frequency background was removed by image difference, and secondly, according to the difference between gray scale and variance of each pixel neighborhood in the image and the gray and variance of the entire image, the pixels to be enhanced was screened out, and through the neighborhood maximum gray scale and the global maximum gray scale to get the gray adjustment coefficient, the image was adaptively enhanced, finally, the enhanced image was segmented by threshold and target separation. The experimental results show that the SNR of weak damage points can be improved by the enhancement algorithm, which is more conducive to detecting weak damage points in the image and improving the accuracy of DKDP crystal damage statistics.

【基金】 国家自然科学基金项目(11972313);国家自然科学基金委员会与中国工程物理研究院联合基金项目(U1530109)
  • 【文献出处】 西南科技大学学报 ,Journal of Southwest University of Science and Technology , 编辑部邮箱 ,2024年01期
  • 【分类号】TP391.41;O766
  • 【下载频次】6
节点文献中: 

本文链接的文献网络图示:

本文的引文网络