节点文献

基于深度强化学习的无人机覆盖路径规划

UAV coverage path planning based on deep reinforcement learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 程文雅余艳梅陶青川陈良红

【Author】 Cheng Wenya;Yu Yanmei;Tao Qingchuan;Chen Lianghong;School of Electronics and Information Engineering, Sichuan University;

【通讯作者】 余艳梅;

【机构】 四川大学电子信息学院

【摘要】 为了提高覆盖路径规划任务的性能,提出了一种基于深度强化学习的多尺度地图无人机覆盖路径规划方法。首先对地图进行中心化和不同尺寸映射的处理,其次加入了Luong注意力机制,最后设计不同权重的奖励函数。实验表明改进后的无人机覆盖路径规划方法可以提高无人机对目标区域的覆盖范围以及成功着陆率。

【Abstract】 To improve the performance of overlay path planning tasks, a multi-scale map UAV coverage path planning method based on deep reinforcement learning is proposed. Firstly, the map is centralized and mapped with different sizes. Secondly, the Luong attention mechanism is added to extract features of more interest on the map. Finally, the reward function with different weights is designed. The experiments show that the improved UAV coverage path planning method can improve the coverage and successful landing rate of the UAV to the target area.

  • 【文献出处】 现代计算机 ,Modern Computer , 编辑部邮箱 ,2024年02期
  • 【分类号】V279
  • 【下载频次】61
节点文献中: 

本文链接的文献网络图示:

本文的引文网络