节点文献

隐私计算环境下深度学习的GPU加速技术综述

A Review of GPU Acceleration Technology for Deep Learning in Plaintext and Private Computing Environments

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 秦智翔杨洪伟郝萌何慧张伟哲

【Author】 Qin Zhixiang;Yang Hongwei;Hao Meng;He Hui;Zhang Weizhe;School of Cyberspace Science, Harbin Institute of Technology;School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen);Department of New Networks,Peng Cheng Laboratory;

【通讯作者】 杨洪伟;

【机构】 哈尔滨工业大学网络空间安全学院哈尔滨工业大学(深圳)计算机科学与技术学院鹏城实验室新型网络研究部

【摘要】 随着深度学习技术的不断发展,神经网络模型的训练时间越来越长,使用GPU计算对神经网络训练进行加速便成为一项关键技术.此外,数据隐私的重要性也推动了隐私计算技术的发展.首先介绍了深度学习、GPU计算的概念以及安全多方计算、同态加密2种隐私计算技术,而后探讨了明文环境与隐私计算环境下深度学习的GPU加速技术.在明文环境下,介绍了数据并行和模型并行2种基本的深度学习并行训练模式,分析了重计算和显存交换2种不同的内存优化技术,并介绍了分布式神经网络训练过程中的梯度压缩技术.介绍了在隐私计算环境下安全多方计算和同态加密2种不同隐私计算场景下的深度学习GPU加速技术.简要分析了2种环境下GPU加速深度学习方法的异同.

【Abstract】 With the continuous development of deep learning technology, the training time of neural network models is getting longer and longer, and using GPU computing to accelerate neural network training has increasingly become a key technology. In addition, the importance of data privacy has also promoted the development of private computing technology. This article first introduces the concepts of deep learning, GPU computing, and two privacy computing technologies, secure multi-party computing and homomorphic encryption, and then discusses the GPU acceleration technology of deep learning in plaintext environment and private computing environment. In the plaintext environment, the two basic deep learning parallel training modes of data parallelism and model parallelism are introduced, two different memory optimization technologies of recalculation and video memory swapping are analyzed, and gradient compression in the training process of distributed neural network is introduced. technology. This paper introduces two deep learning GPU acceleration techniques: Secure multi-party computation and homomorphic encryption in a privacy computing environment. Finally, the similarities and differences of GPU-accelerated deep learning methods in the two environments are briefly analyzed.

【基金】 国家重点研发计划项目(2020YFB1406902);国家自然科学基金青年基金项目(62202123);国家自然科学基金联合重点项目(U22A2036)
  • 【文献出处】 信息安全研究 ,Journal of Information Security Research , 编辑部邮箱 ,2024年07期
  • 【分类号】TP309;TP18
  • 【下载频次】104
节点文献中: 

本文链接的文献网络图示:

本文的引文网络