节点文献
基于CRISPR-Cas系统的微生物基因编辑与调控技术
Gene Editing and Regulation Technology for Microorganisms Based on the CRISPR-Cas System
【摘要】 CRISPR-Cas系统的基因编辑与调控技术为原核和真核微生物的遗传改造提供了高效且精确的工具,显著提升了工业底盘细胞的生产能力和多样性。在原核微生物中,大肠杆菌、枯草芽孢杆菌、谷氨酸棒杆菌等工业重要菌株通过CRISPR-Cas系统实现了代谢网络的重构和多基因位点的精确编辑,显著优化了细胞工厂的生产性能。在真核微生物中,酿酒酵母、毕赤酵母、解脂耶氏酵母等模式生物也得益于CRISPR-Cas系统的发展,尤其是CRISPR-Cas9、CRISPR-Cas12a和碱基编辑工具等在基因组精确编辑和调控中的应用,实现了代谢途径的高效优化。高通量基因组编辑技术,如CHASE、CREATE、iCREATE等,结合了CRISPR-Cas系统的强大工具,能够同时对多个基因进行编辑和调控,加速了对复杂表型的优化和代谢网络的解析。本文总结了CRISPR-Cas系统在原核、真核微生物中的应用及其高通量基因组编辑技术的发展,展望了这些技术在工业微生物细胞工厂构建中的潜在应用。
【Abstract】 The CRISPR-Cas system has revolutionized genetic modification in both prokaryotic and eukaryotic microorganisms, boosting the capabilities of industrial cell factories. Notable strains like Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum in prokaryotes, and Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica in eukaryotes, have undergone metabolic network reconstruction and precise gene editing, enhancing production efficiency. Advanced tools like CRISPR-Cas9, CRISPR-Cas12a and base editors have streamlined metabolic pathway optimization. High-throughput editing technologies such as CHASE, CREATE and iCREATE in conjunction with CRISPR-Cas, allow for simultaneous multi-gene editing, speeding up the development of complex phenotypes and metabolic network analysis. This summary highlights the CRISPR-Cas system′s role in microbial modification and its potential in shaping the future of industrial microbial cell factory construction.
【Key words】 CRISPR-Cas system; microorganisms; gene editing; base editing; metabolic network; high-throughput genome editing; cell factory;
- 【文献出处】 微生物学杂志 ,Journal of Microbiology , 编辑部邮箱 ,2024年06期
- 【分类号】Q78
- 【下载频次】151