节点文献

基于改进Canny算子的电气设备红外图像边缘检测算法

Edge detection algorithm of infrared image of electrical equipment based on improved Canny operator

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李强赵峰许中平刘开培秦亮

【Author】 LI Qiang;ZHAO Feng;XU Zhongping;LIU Kaipei;QIN Liang;State Grid Information and Telecommunication Group Co., Ltd.;Beijing State Grid Information and Telecommunication Group-Accenture Information Technology Co., Ltd.;School of Electrical Engineering and Automation, Wuhan University;

【通讯作者】 秦亮;

【机构】 国网信息通信产业集团有限公司北京国网信通埃森哲信息技术有限公司武汉大学电气与自动化学院

【摘要】 针对电气设备红外图像边缘检测过程中伪边缘过多且易发生边缘断裂的问题,提出一种基于Canny算子的电气设备红外图像改进边缘检测算法。首先,采用Gamma变换对图像低灰度或高灰度部分的细节进行增强以使图像纹理和边缘更加明显;其次,采用插值方式进行非极大值抑制,确定最能吻合像素点所在梯度方向两侧的像素值,提高边缘定位准确性,改善边缘断裂的问题;最后,利用梯度强度计算法实现阈值自动选择,提升算法效率,保证边缘连续性。数据分析和算例验证结果表明,相比传统Canny边缘检测算法,该方法能更准确地检测边缘信息且提取的边缘具有更好的连通性。

【Abstract】 Aiming at the problem of too many false edges and easy edge breakage in the process of edge detection of infrared images of electrical equipment, an improved edge detection algorithm of infrared images of electrical equipment based on Canny operator is proposed. Firstly, Gamma transform is used to enhance the details of the low-gray or high-gray part of the image to make the image texture and edges more obvious.Interpolation method is used to suppress the non-maximum value, and the pixel values on both sides of the gradient direction that are most consistent with the pixel points are determined to improve the accuracy of edge positioning and improve the problem of edge fracture. Gradient intensity calculation method is used to achieve automatic threshold selection, improve the efficiency of the algorithm, and ensure the continuity of the edge.Finally, the data analysis and example verification results show that compared with the traditional Canny edge detection algorithm, the method proposed in this paper can detect the edge information more accurately and the extracted edges have better connectivity.

【基金】 国网信息通信产业集团有限公司科技项目(编号:SGTYHT/19-JS-218)
  • 【文献出处】 武汉大学学报(工学版) ,Engineering Journal of Wuhan University , 编辑部邮箱 ,2024年12期
  • 【分类号】TP391.41;TM50
  • 【下载频次】132
节点文献中: 

本文链接的文献网络图示:

本文的引文网络