节点文献

High-Resolution Recognition of Orbital Angular Momentum Modes in Asymmetric Bessel Beams Assisted by Deep Learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 徐鹏飞童鑫曾子帅刘书悉赵道木

【Author】 Pengfei Xu;Xin Tong;Zishuai Zeng;Shuxi Liu;Daomu Zhao;Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics,Zhejiang University;

【通讯作者】 赵道木;

【机构】 Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics,Zhejiang University

【摘要】 <正>Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different propagation distances remains a significant challenge. We develop a convolutional neural network(CNN)method to realize high-resolution recognition of OAM modalities, leveraging asymmetric Bessel beams imbued with fractional OAM. Experimental results prove that our method achieves a recognition accuracy exceeding 94.3% for OAM modes, with an interval of 0.05, and maintains a high recognition accuracy above 92% across varying propagation distances. The findings of our research will be poised to significantly contribute to the deployment of fractional OAM beams within the domain of optical communications.

【基金】 supported by the National Natural Science Foundation of China (Grant Nos. 12174338 and 11874321)
  • 【文献出处】 Chinese Physics Letters ,中国物理快报(英文版) , 编辑部邮箱 ,2024年07期
  • 【分类号】TP18;TN929.1
  • 【下载频次】2
节点文献中: 

本文链接的文献网络图示:

本文的引文网络