节点文献
含免疫期与救助的一类金融风险传染模型的动力学分析(英文)
DYNAMIC ANALYSIS OF A TYPE OF FINANCIAL RISK CONTAGION MODEL INVOLVING IMMUNITY PERIOD AND SELF-BESCUE
【摘要】 本文研究了一类具有时滞的易感-潜伏-感染-免疫(SEIR)金融风险传染模型的动力学性质.利用稳定性理论和Hopf分岔理论分析了平衡点的稳定性与Hopf分岔产生的解析条件.在已有传染病模型的基础上,本文综合考虑了监管机构的事先预防和个体自身的救助来改进模型,得出两者均能影响感染个体的数量.同时获得了系统产生Hopf分岔的解析条件,并用数值模拟加以验证.
【Abstract】 In this paper,we study the dynamics of a Susceptible-Exposed-Infectious-Recovered(SEIR) financial risk contagion model with time delay.Using stability theory and Hopf bifurcation theory,equilibria stability and Hopf bifurcation are analyzed in detail.Based on the epidemic model,we improve it by taking prior prevention and self-rescue into consideration,conclude preventive intensity and self-rescue capabilities effect the number of infections.At the same time,the analytical conditions for Hopf bifurcation are obtained,and the relevant results are verified by numerical simulations.
【Key words】 financial risk contagion; self-rescue; time delay; Hopf bifurcation;
- 【文献出处】 数学杂志 ,Journal of Mathematics , 编辑部邮箱 ,2024年05期
- 【分类号】F830;O193
- 【下载频次】18