节点文献

基于XGBoost-SHAP模型的太湖流域居民生态补偿支付意愿影响因素研究

Study on influencing factors of residents’ willingness to pay for eco-compensation based on XGBoost-SHAP in Taihu Basin

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 邓梦华张天舒陈军飞

【Author】 DENG Menghua;ZHANG Tianshu;CHEN Junfei;Business School, Hohai University;Jiangsu Research Base of Yangtze Institute for Conservation and High-Quality Development, Hohai University;Changzhou Key Laboratory of Industrial Big Data Mining and Knowledge Management;

【机构】 河海大学商学院河海大学江苏长江保护与高质量发展研究基地常州市工业大数据挖掘与知识管理重点实验室

【摘要】 在对太湖流域居民生态补偿支付意愿调查的基础上,基于可解释机器学习模型XGBoost-SHAP分析了居民生态补偿支付意愿的影响因素,并比较了有支付意愿和没有支付意愿居民之间影响因素的差异。结果表明:影响太湖流域居民生态补偿支付意愿最重要的3个因素为学历、收入和生态环境保护意愿;单个居民之间的支付意愿影响因素呈现一定的差异,尤其是有支付意愿和没有支付意愿居民之间的影响因素差异显著;总体而言,增强居民生态环境保护意识和加大生态补偿政策的宣传可以提升流域居民参与生态补偿的意愿。

【Abstract】 Based on the survey of residents’ willingness to pay for eco-compensation in the Taihu Basin, this paper analyzes the important factors that influence the residents’ willingness to pay for eco-compensation using the interpretable machine learning model XGBoot-SHAP and then compares the difference between those who are willing and those who are unwilling to pay for eco-compensation. The results show that the three most important influencing factors are education, annual income, and the willingness to protect the ecological environment. The important influencing factors are different among individuals, especially those who are willing and those who are unwilling to pay for eco-compensation are obviously different. Enhancing the awareness of ecological environment protection of public and increasing the publicity of eco-compensation policies can improve the willingness to pay for eco-compensation.

【基金】 国家自然科学基金项目(42001250);常州市领军型创新人才引进培育项目(CQ20210095)
  • 【文献出处】 水利经济 ,Journal of Economics of Water Resources , 编辑部邮箱 ,2024年02期
  • 【分类号】X321;F124.5
  • 【下载频次】629
节点文献中: 

本文链接的文献网络图示:

本文的引文网络