节点文献

基于面部运动单元的抑郁症检测方法研究

Research on depression detection method based on facial action unit

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵俊凯高鸿祥赵璐璐柴雪锋王鹏程李建清刘澄玉

【Author】 ZHAO Junkai;GAO Hongxiang;ZHAO Lulu;CHAI Xuefeng;WANG Pengcheng;LI Jianqing;LIU Chengyu;School of Instrument Science and Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University;Political Work Department of the Armed Police Force;Political Work Department of Jiangsu Armed Police Corps;

【通讯作者】 赵璐璐;刘澄玉;

【机构】 东南大学仪器科学与工程学院,数字医学工程全国重点实验室武警部队政治工作部武警江苏总队政治工作部

【摘要】 针对抑郁症的确诊过程繁琐,且依赖于医师的主观判断和经验等问题,本研究利用计算机算法提出了一种基于面部运动单元的抑郁症检测系统。该方法通过扩大人脸图像识别范围,并引入专家先验知识,设置面部运动单元分割规则将人脸检测模型与人脸关键点检测模型的输出结果编码到抑郁症检测模型中;最后,根据获取到的人脸图像中的关键点对每张人脸图像进行区域划分,实现在更细粒度上对人脸的局部区域进行面部运动单元的识别,提高抑郁症检测的精度和准确性。本研究可为基于面部运动单元的抑郁症检测提供一种新思路,具有重要研究意义。

【Abstract】 In order to solve the problem that the depression diagnosis in medical practice is complicated and depends on the subjective judgment and experience accumulation of doctors, we proposed a depression detection system based on facial action unit by using computer algorithm, which expanded the range of facial image recognition and introduced expert prior knowledge. The output results of the face detection model and the key point detection model were encoded into the depression detection model by setting the segmentation rules of the facial action unit. Finally, each face image was divided into regions, which could achieve facial action unit recognition of local regions of the face at a finer granularity, thereby achieving higher accuracy and improving the accuracy of depression detection. This study can provide a new idea for depression detection based on facial action unit, which has important research significance.

【基金】 国家重点研发计划(2023YFC3603600);国家自然科学基金项目(62171123)
  • 【文献出处】 生物医学工程研究 ,Journal of Biomedical Engineering Research , 编辑部邮箱 ,2024年05期
  • 【分类号】R749.4;TP391.41
  • 【下载频次】30
节点文献中: 

本文链接的文献网络图示:

本文的引文网络