节点文献

面向人工耳蜗的改进Wave-U-Net算法

Improved Wave-U-Net algorithm for cochlear implants

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 巩瑾琪叶萍吴逸凡常兆华樊伟许长建

【Author】 GONG Jinqi;YE Ping;WU Yifan;CHANG Zhaohua;FAN Wei;XU Changjian;School of Health Science and Engineering, University of Shanghai for Science and Technology;Micro Port Medical Co, Ltd;

【通讯作者】 叶萍;

【机构】 上海理工大学健康科学与工程学院上海微创天籁医疗科技有限公司

【摘要】 针对人工耳蜗在噪声环境下言语感知效果差,以及现有算法降噪能力不足的问题,本研究提出了一种改进的Wave-U-Net模型。通过采取轻量化卷积,引入注意力机制,改进损失函数,优化数据集结构,以提高人工耳蜗的降噪效果。使用短时客观可懂度(short-time objective intelligibility, STOI)、语音质量评估(perceptual evaluation of speech quality, PESQ)、浮点运算次数(floating point operations per second, FLOPs)和参数量(Params)对模型的降噪效果和复杂度进行了评估,分别达到0.81、2.75,0.83 G,1.04 M。实验结果表明,本研究算法在符合人工耳蜗产品规范的基础上,实现了明显的降噪效果,提高了人工耳蜗使用者在复杂噪声环境中的语音感知效果。本研究方法为人工耳蜗算法的改进提供了新的可能,可为听力受损患者提供更好的听觉感受。

【Abstract】 Aim at poor speech perception in noisy environments by cochlear implant users and the inadequacy of existing noise reduction algorithms, we proposed an improved Wave-U-Net model. By adopting lightweight convolution, introducing attention mechanism, improving loss function, and optimizing dataset structure, the noise reduction effect of cochlear implants was enhanced. Using short-time objective intelligibility(STOI), perceptual evaluation of speech quality(PESQ), floating point operations per second(FLOPs), and Params to evaluate the noise reduction effect and complexity of the model, which reached 0.81, 2.75, 0.83 G, and 1.04 M, respectively. The experimental results showed that our algorithm achieved obvious noise reduction effect while conformed to the specifications of cochlear implant products, improved the speech perception effect of cochlear implant users in complex noise environments. The results provide new possibilities for the improvement of cochlear implant algorithms and can offer better auditory experience for patients with hearing impairment.

  • 【文献出处】 生物医学工程研究 ,Journal of Biomedical Engineering Research , 编辑部邮箱 ,2024年01期
  • 【分类号】R318.1
  • 【下载频次】24
节点文献中: 

本文链接的文献网络图示:

本文的引文网络