节点文献

基于区间中智集的一种新型三支决策模型

A novel three-way decision model based on interval-valued neutrosophic sets

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 田中文张贤勇陈江

【Author】 TIAN Zhongwen;ZHANG Xianyong;CHEN Jiang;School of Mathematical Sciences, Sichuan Normal University;Institute of Intelligent Information and Quantum Information, Sichuan Normal University;School of Mathematics and Statistics,Sichuan University of Science and Engineering;

【通讯作者】 张贤勇;

【机构】 四川师范大学数学科学学院四川师范大学智能信息与量子信息研究所四川轻化工大学数学与统计学院

【摘要】 中智集作为模糊集的推广,有利于描述各种不确定、不一致、不连续的信息.针对单值中智集的三支决策分类结果单一缺陷,本文构建一种在区间中智集上的三支决策模型.首先,在单值中智集的定义上给出区间中智集的概念,根据贝叶斯决策理论和曼哈顿距离提出一种新的三支决策模型.然后,在区间中智集的信息系统中采用相似度计算条件概率得到期望损失,进一步建立区间中智集的三支决策模型.最后,通过医疗诊断实例具体阐述模型的应用,并讨论参数变化对决策结果的影响.

【Abstract】 As a type of generalization of fuzzy sets, neutrosophic sets are helpful to describe all kinds of uncertain, inconsistent and discontinuous information. Since the classification result of the three-way decision on a single-valued neutrosophic set is relatively unitary, a three-way decision model on an interval-valued neutrosophic set is constructed. Firstly, based on the definition of a single-valued neutrosophic set, the concept of an interval-valued neutrosophic set is given, and a new three-way decision model is proposed by combining Bayesian decision theory and Manhattan distance. Then, under the given similarity, the conditional probability is calculated to obtain the expected loss in the information system of the interval-valued neutrosophic set, and the three-way decision model of the interval-valued neutrosophic set is established. Finally, the application of new model is illustrated by an example of medical diagnosis, and the effects of parameter variations on decision results are discussed.

【基金】 国家自然科学基金项目(61673258);四川省自然科学基金项目(2022NSFSC0929);四川省科技计划项目(2022ZYD0001,2022YJ0085)
  • 【文献出处】 内江师范学院学报 ,Journal of Neijiang Normal University , 编辑部邮箱 ,2024年10期
  • 【分类号】TP18
  • 【下载频次】18
节点文献中: 

本文链接的文献网络图示:

本文的引文网络