节点文献

基于PSO-Fuzzy-PID的电阻加热炉温度控制系统设计

Design of Resistance Furnace Temperature Control System Based on PSO-Fuzzy-PID

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 戴玉明任媛崔译文沈亮储鹏

【Author】 DAI Yuming;REN Yuan;CUI Yiwen;SHEN Liang;CHU Peng;School of Materials Science and Engineering, Nangjing Institute of Technology;Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology;Jiangsu Diantou Yi Chong New Energy Technology Co., Ltd.;Jiangsu Changjili New Energy Technology Co., Ltd.;

【机构】 南京工程学院材料科学与工程学院江苏省先进结构材料与应用技术重点实验室江苏电投易充新能源科技有限公司江苏昌吉利新能源科技有限公司

【摘要】 针对电阻加热炉温度控制系统存在的稳态精度低、调节时间长及固有的非线性、大时滞和低智能化等问题,设计一种算法优化的智能温度控制系统.该系统采用基于粒子群优化算法的模糊PID控制策略(PSO-Fuzzy-PID)实现对电阻加热炉温度的精确调控.经Matlab仿真分析,PSO-Fuzzy-PID控制器精度高、超调量小、调节时间短且抗干扰能力强,相较于传统PID控制器,其超调量减少45.18%,调节时间缩短37.5 s,稳态误差减少0.021.该系统可实现高精度、低时延的炉温控制,具有一定的工程应用价值.

【Abstract】 In response to the deficiencies in the temperature control systems of resistance heating furnaces-characterized by low steady-state accuracy, extended adjustment durations, inherent nonlinearity, significant time delays, and limited intelligence, an optimized intelligent temperature control system was developed. This system employed a particle swarm optimization based fuzzy proportional integral derivative control strategy, referred to as PSO-Fuzzy-PID, which facilitated more precise regulation of furnace temperature. Through Matlab simulation analysis, the PSO-Fuzzy-PID controller achieved enhanced control accuracy while minimizing overshoot and reducing adjustment durations while exhibiting superior anti-interference capabilities. Compared to traditional PID controllers, this system demonstrated a 45.18% reduction in overshoot, 37.5 s decrease in adjustment durations, and a reduction of 0.021 in steady-state error. Consequently, this system facilitated high precision and low latency temperature control for furnaces, demonstrating significant value for engineering application.

【基金】 江苏省“六大人才高峰”高层次人才项目(XCL-222)
  • 【文献出处】 南京工程学院学报(自然科学版) ,Journal of Nanjing Institute of Technology(Natural Science Edition) , 编辑部邮箱 ,2024年04期
  • 【分类号】TM924.3;TP273
  • 【下载频次】31
节点文献中: 

本文链接的文献网络图示:

本文的引文网络