节点文献

考虑碳排放流和阶梯式碳交易的配电网优化调度

Optimization scheduling of distribution networks considering carbon emission flow and staged carbon trading

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王大鑫张倩郑诗程华玉婷崔华虎

【Author】 Wang Daxin;Zhang Qian;Zheng Shicheng;Hua Yuting;Cui Huahu;School of Electrical Engineering and Automation, Anhui University;Engineering Research Center of Power Quality, Ministry of Education, Anhui University;Anhui Key Laboratory of Industrial Energy-Saving and Safety, Anhui University;School of Electrical and Information Engineering, Anhui University of Technology;Institute of Energy,Hefei Comprehensive National Science Center;Anhui Collaborative Innovation Center of Industrial Energy-Saving and Power Quality Control, Anhui University;

【通讯作者】 张倩;

【机构】 安徽大学电气工程与自动化学院安徽大学教育部电能质量工程研究中心安徽大学工业节电与用电安全安徽省重点实验室安徽工业大学电气与信息工程学院合肥综合性国家科学中心能源研究院安徽省能源实验室安徽大学工业节电与电能质量控制安徽省级协同创新中心

【摘要】 文章考虑碳排放流和阶梯式碳交易机制,提出了优化调度模型以促进配电网低碳经济运行。该模型首先考虑配电网参与碳交易市场,引入碳排放流理论得到配网内各节点的碳排放情况;然后,提出利用蒙特卡洛算法得到电动汽车的随机状态,基于熵权法得到发电设备的碳配额情况。同时构建电动汽车的碳配额模型,并结合阶梯式碳交易机制建立电动汽车、光伏、风力和火电机组的碳排放模型;最后,以最小化系统运作成本和最大化系统碳收益为双目标,使用改进的PSO优化算法对系统进行求解。设置了4种运行场景对改进的IEEE-33节点配网系统进行算例仿真。实验结果表明,所提模型碳排放减少539.43 t、消纳量增加555.27 kW·h、系统碳收益增加7 962.79元。

【Abstract】 Under the context of "dual carbon," an optimization scheduling model considering carbon emission flow and staged carbon trading mechanism is proposed in this paper to promote the low-carbon economic operation of distribution networks. Firstly, the participation of distribution networks in the carbon trading market is taken into account, and the theory of carbon emission flow is introduced to determine the carbon emission status of each node within the distribu-tion network. Subsequently, the stochastic states of electric vehicles are determined using the Monte Carlo algorithm, and the carbon quota of power generation equipment is obtained based on the entropy weight method. Simultaneously, a carbon quota model for electric vehicles is constructed, and a staged carbon trading mechanism is applied to model electric vehicles,photovoltaic units, wind power generation, and thermal power units. Finally, the system is optimized using an improved particle swarm optimization algorithm, with the objectives of minimizing the system operating cost and maximizing the system carbon income. The proposed model is verified through case studies conducted on an im-proved IEEE-33 node distribution network system, where four operating scenarios are set. The research results demon-strate that the proposed model reduces carbon emissions by 539.43 tons, and the amount of wind and light discarded is reduced by 555.27 kW·h, which also makes the system’s carbon revenue increase by79.627 9 yuan.

【基金】 安徽省自然科学基金资助项目(2108085UD01);2022年度高校与合肥综合性国家科学中心协同创新项目(GXXT-2022-023)
  • 【文献出处】 可再生能源 ,Renewable Energy Resources , 编辑部邮箱 ,2024年12期
  • 【分类号】TM73;X322
  • 【下载频次】120
节点文献中: 

本文链接的文献网络图示:

本文的引文网络