节点文献

一元及多元信号分解发展历程与展望

Univariate and Multivariate Signal Decomposition:Review and Future Directions

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈启明文青松郎恂谢磊苏宏业

【Author】 CHEN Qi-Ming;WEN Qing-Song;LANG Xun;XIE Lei;SU Hong-Ye;State Key Laboratory of Industrial Control Technology,Zhejiang University;Damo Academy,Alibaba Group;School of Information,Yunnan University;

【通讯作者】 郎恂;

【机构】 浙江大学工业控制技术国家重点实验室阿里巴巴达摩院云南大学信息学院

【摘要】 现实世界中,所获得的信号大部分都是非平稳和非线性的,将此类复杂信号分解为多个简单的子信号是重要的信号处理方法. 1998年,提出希尔伯特–黄变换(Hilbert-Huang transform, HHT)以来,历经20余年的发展,信号分解已经成为信号处理领域相对独立又具有创新性的重要内容.特别是近10年,多元/多变量/多通道信号分解理论方法方兴未艾,在诸多领域得到了成功应用,但目前尚未见到相关综述报道.为填补这个空缺,从单变量和多变量两个方面系统综述了国内/外学者对主要信号分解方法的研究现状,对这些方法的时频表达性能进行分析和比较,指出这些分解方法的优势和存在的问题.最后,对信号分解研究进行总结和展望.

【Abstract】 Most signals obtained in the real world are non-stationary and nonlinear, decomposing such complex signals into several simple sub-signals is an important signal processing method. Since the Hilbert-Huang transform(HHT) was proposed in 1998, after more than 20 years of development, signal decomposition has become a relatively independent and innovative important content in the field of signal processing. Especially in the past decade,multivariate signal decomposition methods and theoretical research are in the ascendant, which have been successfully applied in many fields. However, there is no relevant overview report at present. Therefore, this paper systematically summarizes the development of signal decomposition theory and methods from both univariate and multivariate aspects. This work analyzes and compares the time-frequency expression performance of these methods,and points out the advantages and issues. Finally, the future research of signal decomposition is prospected and summarized.

【基金】 国家自然科学基金(62003298,62073286);云南省基础研究计划(202201AT070577)资助~~
  • 【文献出处】 自动化学报 ,Acta Automatica Sinica , 编辑部邮箱 ,2024年01期
  • 【分类号】TN911.7
  • 【下载频次】11
节点文献中: 

本文链接的文献网络图示:

本文的引文网络