节点文献

基于动态加权的集成DAE的旋转机械故障诊断

Fault Diagnosis of Rotating Machinery Based on Dynamic Weighted Integrated DAE

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 滕莉娜王娟平

【Author】 TENG Li-na;WANG Juan-ping;Jilin Railway Technology College;College of Mechanical Engineering,Baoji University of Arts and Sciences;

【机构】 吉林铁道职业技术学院宝鸡文理学院机械工程学院

【摘要】 为了提升鲁棒性和泛化性,并且考虑各种深度自动编码器的互补性能,提出了一种基于动态加权的集成深度自动编码器的旋转机械故障诊断。结合稀疏深度自动编码器,降噪深度自动编码器和收缩深度自动编码器三种模型来构造集成深度自动编码器,提升处理冗余信息、噪声破坏和信号扰动的能力。为了增强识别性能,提出了一种动态加权平均方法来聚合学习特征。在自吸离心泵数据集和电机轴承数据集上进行了实验验证,结果显示提出方法的测试精度分别达到100%、99.69%和99.92%。通过与其他方法的比较,证明了提出的故障诊断方法的有效性。

【Abstract】 In order to improve the robustness and generalization,and consider the complementary performance of various depth automatic encoders,a fault diagnosis method of rotating machinery based on dynamic weighting integrated depth automatic encoder was proposed.Combined with sparse depth automatic encoder,noise reduction depth automatic encoder and shrinking depth automatic encoder,the integrated depth automatic encoder was constructed to improve the ability of processing redundant information,noise damage and signal disturbance.In order to enhance the recognition performance,a dynamic weighted average method was proposed to aggregate learning features.The experimental verification is carried out on the data sets of centrifugal pump and motor bearing,and the results show that the test accuracy of the proposed method is 100%,99.69% and 99.92% respectively.Compared with other methods,the effectiveness of the proposed fault diagnosis method is proved.

【基金】 2016年吉林省教育厅职成处教改课题(2016ZCY170)
  • 【文献出处】 机械设计与制造 ,Machinery Design & Manufacture , 编辑部邮箱 ,2024年03期
  • 【分类号】TH17
  • 【下载频次】28
节点文献中: 

本文链接的文献网络图示:

本文的引文网络