节点文献

二维码定位和惯性导航融合的机器人定位技术

Robot Positioning Technology Based on the Fusion of Two-dimensional Code Positioning and Inertial Navigation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王景举孟彩茹赵义鹏孟欣佳严浩王磊磊

【Author】 WANG Jingju;MENG Cairu;ZHAO Yipeng;MENG Xinjia;YAN Hao;WANG Leilei;School of Mechanical and Equipment Engineering, Hebei University of Engineering;

【通讯作者】 王磊磊;

【机构】 河北工程大学机械与装备工程学院

【摘要】 床椅一体化机器人研究中,传统的多传感器融合定位算法无法有效处理时变噪声而导致定位精度较低。据此基于QR二维码和IMU惯导融合定位进行研究,提出一种自适应模糊推理无迹卡尔曼滤波算法,可实时调节无迹卡尔曼滤波的噪声,以实现床椅模块的精准定位。通过模拟传感器数据仿真,并进行机器人小车实验验证。结果表明:在传感器定位误差较大的情况下,该算法仍能得到最优的定位结果,相较与传统无迹卡尔曼滤波算法,均方误差减少了38.94%,最大误差减少了21.6%。

【Abstract】 In the research of bed and chair integrated robots, the traditional multi-sensor fusion localization algorithm cannot effectively deal with time-varying noise, resulting in low localization accuracy. Based on the research of QR code and IMU inertial navigation fusion positioning, an adaptive fuzzy inference unscented Kalman filter algorithm is proposed, which could adjust the noise of unscented Kalman filter in real time to realize accurate positioning of the bed and chair module. The results from sensor data simulation and robot car experiment show that the proposed algorithm can still obtain the optimal positioning results when the sensor positioning error is large. Compared with the traditional unscented Kalman filter algorithm, the mean square error is reduced by 38.94%, and the maximum error is reduced by 21.6%.

【基金】 河北省自然科学基金项目(E2021402052;E2022402059)
  • 【文献出处】 机械设计与研究 ,Machine Design & Research , 编辑部邮箱 ,2024年04期
  • 【分类号】TP242
  • 【下载频次】33
节点文献中: 

本文链接的文献网络图示:

本文的引文网络