节点文献

基于密度峰值的海量云数据模糊聚类算法设计

Design of fuzzy clustering algorithm for massive cloud data based on density peak

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张西广张龙飞马钰锡樊银亭

【Author】 ZHANG Xi-guang;ZHANG Long-fei;MA Yu-xi;FAN Yin-ting;Zhongyuan-Petersburg Aviation College, Zhongyuan University of Technology;School of Computer Science & Technology, Beijing Institute of Technology;Integration & Innovation Center, Institute of Software Chinese Academy of Sciences;

【机构】 中原工学院中原彼得堡航空学院北京理工大学计算机学院中国科学院软件研究所集成创新中心

【摘要】 为准确聚类海量云数据,提出一种基于密度峰值的海量云数据模糊聚类算法。将含有噪声的云数据采用BP神经网络分离,将输出的噪声利用奇异值分解重构,获取联合算法输出的噪声,将带有噪声的云数据和输出噪声相减,得到去噪后的云数据。将密度峰值和优化后的模糊聚类算法相结合,自适应形成初始聚类中心,确定聚类数量,最终实现海量云数据模糊聚类。实验结果表明:本文算法获取的聚类效果和聚类效率明显优于其他算法。

【Abstract】 In order to cluster massive cloud data accurately, a fuzzy clustering algorithm for massive cloud data based on peak density is proposed. The cloud data with noise is separated by BP neural network, and the output noise is reconstructed by singular value decomposition to obtain the noise output by the joint algorithm. The cloud data with noise is subtracted from the output noise to obtain the cloud data after noise removal. The density peak is combined with the optimized fuzzy clustering algorithm to adaptively form the initial clustering center, determine the number of clusters, and finally realize the fuzzy clustering of massive cloud data. Experimental results show that the clustering effect and efficiency of the proposed algorithm are significantly better than other algorithms.

【基金】 国家重点研发计划项目(2018YFB1403905)
  • 【文献出处】 吉林大学学报(工学版) ,Journal of Jilin University(Engineering and Technology Edition) , 编辑部邮箱 ,2024年05期
  • 【分类号】TP311.13;TP393.09
  • 【下载频次】45
节点文献中: 

本文链接的文献网络图示:

本文的引文网络