节点文献
陶瓷磨削用多层钎焊金刚石砂轮的研制
Development of multilayer brazed diamond grinding wheel for ceramic precision grinding
【摘要】 为解决传统树脂、电镀金刚石砂轮磨削陶瓷材料时存在的磨削寿命短、砂轮易堵塞烧伤等问题,分析利用钎焊金刚石技术制备陶瓷磨削用多层钎焊金刚石砂轮的可行性。结合钎料组分优选,制备具有开槽结构的多层钎焊金刚石砂轮,并对99.9%高纯度的Al2O3陶瓷进行磨削性能试验。结果表明:树脂、电镀金刚石砂轮分别存在磨削效率低和磨削寿命不足的问题,单层钎焊金刚石砂轮磨削效率较高但磨削寿命有限,多层钎焊金刚石在保持高磨削效率的同时磨削寿命优势明显,较单层钎焊金刚石磨轮提升约60%。在陶瓷材料磨削过程中,多层钎焊金刚石砂轮磨削效果显著,虽磨粒出露高度有限,但开槽设计的排屑效果显著,砂轮表面不易发生陶瓷粉末黏结、堵塞。
【Abstract】 To address the issues of low grinding efficiency and the tendency of blockage and burning of the grinding wheel when working with ceramic materials using traditional resin and electroplated diamond grinding wheels, the feasibility of using brazed diamond technology to prepare a multilayer brazed diamond grinding wheel for ceramic grinding is analyzed. Combined with the optimization of filler metal composition, a multilayer brazed diamond grinding wheel with a slotted structure is prepared, and the grinding performance of 99.9% high-purity Al2O3 ceramics is tested. The results show that resin and electroplated diamond grinding wheels suffer from low grinding efficiency and insufficient grinding life, respectively. Single-layer brazed diamond grinding wheels exhibit high grinding efficiency but have limited grinding life. Multilayer brazed diamond grinding wheels show obvious advantages in terms of grinding life while maintaining high grinding efficiency, being about 60% higher than that of single-layer brazed diamond grinding wheels.During the ceramic material grinding process, the multilayer brazed diamond grinding wheel demonstrates remarkable grinding effectiveness. Despite the limited exposed height of abrasive particles, the slotting design significantly enhances chip removal, preventing the wheel’s surface from bonding and blocking with ceramic powder.
【Key words】 ceramic grinding; brazed diamond; multi-layer grinding wheel; grinding efficiency;
- 【文献出处】 金刚石与磨料磨具工程 ,Diamond & Abrasives Engineering , 编辑部邮箱 ,2024年01期
- 【分类号】TG743
- 【下载频次】23