节点文献

基于实时局部建图的激光雷达长周期定位方法

Long-Period Localization Method for LiDAR Based on Local Mapping

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 齐含刘元盛张军满恂钰张志铭

【Author】 Qi Han;Liu Yuansheng;Zhang Jun;Man Xunyu;Zhang Zhiming;Smart City College, Beijing Union University;Beijing Key Laboratory of Information Service Engineering;

【通讯作者】 刘元盛;

【机构】 北京联合大学智慧城市学院北京市信息服务工程重点实验室

【摘要】 非结构化道路中的无人驾驶精确定位大量使用基于激光雷达的simultaneous localization and mapping(SLAM)技术,解决因环境变化导致的预建地图匹配失败,进而引起定位丢失的问题一直是业内难题和热点研究方向之一。针对上述问题,提出一种利用激光雷达和惯性测量单元在normal distribution transform(NDT)定位基础上融合实时局部地图匹配的长周期鲁棒定位方法 online location normal distributions transform(OL-NDT)。OL-NDT将NDT获得的定位信息作为测量信息因子输入因子图中优化实时构建的局部地图,并且在其全局定位丢失后采用实时局部地图进行定位。在MulRan数据集上进行定位精度测试,OL-NDT的累计误差占比为0.40%,较现有的传统定位方法降低了1.06个百分点,定位精度得到了有效提升,且在静态结构发生较大变化的场景下也可以精准定位。同时,利用在北京联合大学采集的校园数据验证了在短暂无地图情况下OL-NDT的定位轨迹精度与已知地图时完全匹配。

【Abstract】 The precise positioning of driverless vehicles on unstructured roads extensively relies on LiDAR-based simultaneous localization and mapping(SLAM). However, the problem of localization loss, caused by the failure of prebuilt map matching due to environmental changes, has been an industry challenge and a popular research direction. To address the aforementioned problems, this study proposes a long-term robust localization method, online location normal distributions transform(OL-NDT), which uses LiDAR and inertial measurement units to combine real-time local map matching based on NDT localization. OL-NDT inputs the localization information obtained by NDT as measurement information factors into the factor map to optimize the local maps constructed in real time and uses real-time local maps for localization after NDT localization is lost. OL-NDT is tested on the MulRan dataset and achieves a cumulative error percentage of 0. 40%, which is 1. 06 percentage points lower than the existing traditional localization methods. This effectively improves localization accuracy and enables accurate localization in scenarios with significant changes in the static structure. Moreover, the campus data collected by Beijing Union University is used to verify that the localization trajectory accuracy of OL-NDT precisely matches the known map, even in cases of short-term missing maps.

【基金】 国家重点研发计划(2021YFC3001300);国家自然科学基金重点项目合作项目(61931012);北京市属高等学校高水平科研创新团队建设支持计划项目(BPHR20220121);北京联合大学高水平孵化项目和新进博士孵化项目(ZK10202208)
  • 【文献出处】 激光与光电子学进展 ,Laser & Optoelectronics Progress , 编辑部邮箱 ,2024年04期
  • 【分类号】TN958.98
  • 【下载频次】38
节点文献中: 

本文链接的文献网络图示:

本文的引文网络