节点文献

一种控制输入约束下的不确定离散系统非脆弱保性能控制器设计

Non-Fragile Guaranteed Cost Control for Uncertain Discrete System with Control input Constraints

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 段虹州韩光信高兴泉

【Author】 DUAN Hongzhou;HAN Guangxin;GAO Xingquan;Jilin Institute of Chemical Technology;Jilin Industrial Vocational and Technical College;

【通讯作者】 高兴泉;

【机构】 吉林化工学院吉林工业职业技术学院

【摘要】 【目的】针对考虑扰动及摄动情况下的控制输入约束的不确定离散系统,提出了非脆弱保性能的控制方法。【方法】首先,以最小化目标函数为性能指标、控制输入饱和范围为约束条件,从而推导出约束状态下的非脆弱保性能控制律。其次,使用李雅普诺夫方程来构造非线性矩阵不等式。再次,结合Schur补定理和布谷鸟群智能优化算法对不等式进行求解,得到控制输入约束下的非脆弱保性能控制律的参数。最后,通过Quanser三自由度陀螺仪平台进行试验验证。【结果】试验结果表明,本研究所提出方法的稳态误差浮动不超过0.07、跟踪误差不超过0.15。【结论】该方法在面对扰动及摄动情况时具有更高的鲁棒性,对提升三自由度陀螺仪的稳定性及控制精度具有重要意义。

【Abstract】 [Purposes] In this paper, a non-fragile guaranteed performance control method is proposed for uncertain discrete systems with input constraints under perturbation. [Methods] In this method, By taking the minimum objective function as the performance index and taking the saturation range of the control input as the constraint condition, the non-fragile guaranteed performance control law under the constraint state is derived. Secondly, the nonlinear matrix inequality is constructed by Lyapunov equation.Then, Schur’s complement theorem and Cuckoo bird intelligent optimization algorithm are used to solve the inequality, and the non-fragile guaranteed performance control law parameters under the control input constraints are obtained. Finally, the experiment is verified by Quanser-3-DOF gyroscope platform.[Findings] The results show that the steady-state error of the proposed method is less than 0.07 and the tracking error is less than 0.15. [Conclusions] The method proposed in this paper has higher robustness in the face of disturbance and perturbation, and is of great significance for improving the stability and control accuracy of the 3-DOF gyroscope.

【基金】 基于深度学习的数控加工智能化关键技术与系统开发项目(212551GX010288291);基于微分平坦的多容耦联水罐液位系统优化控制方法研究项目(JJKH20200252K)
  • 【文献出处】 河南科技 ,Henan Science and Technology , 编辑部邮箱 ,2024年03期
  • 【分类号】TP13
  • 【下载频次】12
节点文献中: 

本文链接的文献网络图示:

本文的引文网络