节点文献

基于特征优化的Census立体匹配方法

Research and Implementation of Census Stereo Matching Method Based on Feature Information Optimization

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 游达章周宏耀张业鹏

【Author】 YOU Dazhang;ZHOU Hongyao;ZHANG Yepeng;School of Mechanical Engineering,Hubei Univ. of Tech.;Hubei Key Lab of Manufacture Quality Engineering;

【通讯作者】 周宏耀;

【机构】 湖北工业大学机械工程学院湖北省现代制造质量工程重点实验室

【摘要】 针对传统Census立体匹配算法在弱纹理和边缘区域匹配精度较差的问题,提出一种基于特征信息优化的代价计算方法,在窗口中融入更多的差异信息以获得更精确的像素视差值。随后采用多方向路径独立的线扫描优化计算聚合代价以进一步提高匹配精度。为获得更好的遮挡区域匹配效果,提出一种基于差异填充的视差优化方法,对遮挡像素进行识别和视差填充。为提高算法的效率,提出一种基于降采样策略的算法运行模式,通过缩小视差搜索范围以减少硬件负荷。最后以五组标准图像为输入进行改进Census算法性能检验,结果显示,平均误匹配率为6.12%,较改进前降低了2.45%,算法效率平均提升17.7%。

【Abstract】 Aiming at the problem of poor matching accuracy of traditional Census stereo matching algorithm in weak texture and edge areas, we propose a cost calculation method based on feature information optimization, which integrates more difference information into the window to obtain more accurate pixel disparity value. Subsequently, multidirectional path independent line scan optimization was used to calculate the aggregation cost to further improve the matching accuracy. In order to obtain better occlusion area matching effect, a disparity optimization method based on difference filling is proposed to identify the occlusion pixels and make disparity filling. In order to improve the efficiency of the algorithm, a new algorithm operation mode based on the downsampling strategy is proposed to reduce the hardware load by narrowing the disparity search range. Finally, the performance test of the improved Census algorithm was conducted with five sets of standard images as input. The results showed that the average mismatching rate was 6.12%, which was 2.45% lower than before the improvement, and the average efficiency of the algorithm increased by 17.7%.

【基金】 国家自然科学基金(51875180)
  • 【文献出处】 湖北工业大学学报 ,Journal of Hubei University of Technology , 编辑部邮箱 ,2024年01期
  • 【分类号】TP391.41
  • 【下载频次】29
节点文献中: 

本文链接的文献网络图示:

本文的引文网络