节点文献

基于宽度学习的新型电力系统负荷多步预测方法

A multi-step load forecasting method for novel modern power systems based on broad learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 夏蕾张世林李文美谷紫文黄纯郭思维王国卉杨蕾

【Author】 XIA Lei;ZHANG Shilin;LI Wenmei;GU Ziwen;HUANG Chun;GUO Siwei;WANG Guohui;YANG Lei;State Grid Henan Electric Power Company Marketing Service Center;College of Electrical and Information Engineering,Hunan University;

【机构】 国网河南省电力公司营销服务中心湖南大学电气与信息工程学院

【摘要】 随着能源需求的增加和新型电力系统复杂性的提高,负荷的非平稳性、混沌性和非线性特征凸显。为了应对上述问题对负荷精准预测的挑战,提出一种基于多模态动态潜变量宽度学习系统的负荷多步预测方法。首先,根据负荷的非平稳特征,采用变分模态分解算法将原始负荷序列分解为多个相对平稳的模态分量,以减少非平稳性对预测的干扰。其次,针对负荷的混沌特征,基于模态分解结果,提出了一种基于动态潜变量建模的动态相空间重构方法,在相空间中提取负荷序列的动态演变趋势。最后,根据负荷的非线性特征,通过宽度学习系统挖掘并揭示负荷序列在相空间中的动态演变趋势,以完成负荷的多步预测任务。工程实际案例分析表明,提出的预测方法具有高精度的负荷预测能力。

【Abstract】 With the increasing demand for energy and the growing complexity of modern power systems, the non-stationarity, chaotic behavior, and non-linear characteristics of loads have become more pronounced. To address the challenges posed by these issues in accurate load forecasting, a multi-modal dynamic latent variable width learning system-based multi-step load forecasting method is proposed. Firstly, to tackle the non-stationary characteristics of load data, the variational mode decomposition algorithm is employed to decompose the original load sequence into multiple relatively stationary mode components, reducing the interference of non-stationarity on forecasting. Secondly, to address the chaotic features of load data, a dynamic phase space reconstruction method based on the results of mode decomposition is proposed to extract the dynamic evolution trends of load sequences in phase space. Finally, to handle the nonlinear characteristics of loads, a broad learning system is utilized to mine and reveal the dynamic evolution trends of load sequences in phase space for multi-step load forecasting tasks. The results of real-world case studies demonstrate that the proposed forecasting method exhibits high-precision load forecasting capabilities in novel modern power systems.

【基金】 湖南省科技重大专项项目(2020GK1010);国网河南省电力公司科技项目(5217X0230002)~~
  • 【文献出处】 供用电 ,Distribution & Utilization , 编辑部邮箱 ,2024年01期
  • 【分类号】TM715
  • 【下载频次】63
节点文献中: 

本文链接的文献网络图示:

本文的引文网络