节点文献
基于支持向量机与蛇优化算法的氧化锆陶瓷磨削工艺参数优化
Optimization of Zirconia Ceramic Grinding Process Parameters Based on Support Vector Machine and Snake Optimizer Algorithm
【摘要】 为探究磨削工艺参数对氧化锆陶瓷的磨削温度和法向磨削力的影响,通过单因素实验和支持向量机方法建立磨削温度、法向磨削力的一元模型,模型决定系数均大于0.93。基于一元模型对多元模型进行假设,由正交实验结果和蛇优化算法求解得到多元模型,并对模型进行验证。以温度、法向磨削力的多元数值模型作为目标函数,对温度和法向磨削力进行优化;基于蛇优化算法对工艺参数进行双目标优化,获得磨削工艺参数的最优解,验证实验结果表明,模型具有较高的精度,得到的最优工艺参数合理。
【Abstract】 In order to explore the influence of grinding process parameters on the grinding temperature and normal grinding force of zirconia ceramics, a univariate model of grinding temperature and normal grinding force is established by single factor test and support vector machine method, and the model coefficients are greater than 0.93.According to the monary model, the hypothesis of the multivariate model is proposed, and the multivariate model is obtained by the orthogonal experimental results and the snake optimization algorithm, and the model is verified.The multivariate numerical model of temperature and normal grinding force is used as the objective function to optimize the temperature and normal grinding force.Based on the snake optimization algorithm, the process parameters are double-objective optimized to obtain the optimal solution of the grinding process parameters, and the experimental results verify that the model has high precision, and the optimal process parameters obtained are reasonable.
【Key words】 support vector machine; snake optimizer algorithm; parameter optimization; zirconia ceramic;
- 【文献出处】 工具技术 ,Tool Engineering , 编辑部邮箱 ,2024年05期
- 【分类号】TQ174.6;TP18
- 【下载频次】116