节点文献

基于异构信息网络的Android恶意程序检测方法

Android Malware Application Detection Method Based on Heterogeneous Information Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 殷丹丽凌捷

【Author】 Yin Dan-li;Ling Jie;School of Computer Science and Technology, Guangzhou University of Technology;

【通讯作者】 凌捷;

【机构】 广东工业大学计算机学院

【摘要】 针对传统Android恶意程序检测方法无法解决的伪装及实时检测问题,提出了一种基于异构信息网络的Android恶意程序检测方法。将Android实体及关系建模为异构信息网络中的节点和边,设计了元结构注意力网络表示学习模型和增量学习模型。首先使用元结构注意力网络表示学习模型进行训练集节点嵌入,将节点嵌入及标签输入到深度神经网络中进行训练,再采用增量表示学习模型学习测试集节点嵌入,使用top-k算法寻找邻居节点进行聚合,将待检测节点输入到训练好的深度神经网络中进行检测。实验结果表明,该方法F 1值为97.5%,准确率为96.7%,平均检测时间3.7 ms。与现有方法相比,F 1值和准确率更高,平均检测时间更短,表明该方法能够有效应对Android恶意程序伪装,可以用于实时Android恶意程序检测。

【Abstract】 To address the problems of camouflage and real-time detection of the traditional Android malware detection methods, a new Android malware detection method based on heterogeneous information networks is proposed. By modeling the Android entities and relationships nodes and edges, respectively, in a heterogeneous information network, two network representation learning models are designed, including the meta-structure attention network representation learning and the incremental learning models. First, the meta-structure attention network representation learning model is used for intra-sample node embedding, and the embedded nodes and labels are input to a deep neural network for training. Then, the incremental learning model is used for learning the extra-sample node embeddings. The top-k algorithm is used to aggregate neighboring nodes within the heterogeneous information network, and the embedded node to be detected is input to the trained deep neural network for detection. Experimental results show that the F1 value of the proposed method is 97.5%, the accuracy rate is 96.7%, and the average detection time is 3.7 ms, which are better than the existing methods, demonstrating the effectiveness of the proposed method for dealing with Android malware camouflage and for real-time Android malware detection.

【基金】 广东省重点领域研发计划项目(2019B010139002);广州市科技研发计划项目(202007010004)
  • 【文献出处】 广东工业大学学报 ,Journal of Guangdong University of Technology , 编辑部邮箱 ,2024年02期
  • 【分类号】TP309;TP311.56
  • 【下载频次】31
节点文献中: 

本文链接的文献网络图示:

本文的引文网络