节点文献

求解流动传热问题的简化离散速度热格子Boltzmann通量求解器研究

A Thermal Lattice Boltzmann Flux Solver with Simplified Discrete Velocity Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘翔童自翔何雅玲俞逸斯汪思成

【Author】 LIU Xiang;TONG Zixiang;HE Yaling;YU Yisi;WANG Sicheng;Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering,Xi’an Jiaotong University;School of Energy and Power Engineering, Beihang University;

【通讯作者】 何雅玲;

【机构】 西安交通大学能源与动力工程学院,热流科学与工程教育部重点实验室北京航空航天大学能源与动力工程学院

【摘要】 热格子Boltzmann通量求解器(Lattice Boltzmann Flux Solver, LBFS)是求解流动传热问题的重要方法。传统热LBFS基于标准离散速度模型,在计算效率方面存在不足。针对该问题,本文发展了求解流动传热问题的简化离散速度热LBFS。基于包含较少离散速度的二维五速(D2Q5)模型,发展了求解热力学能方程的LB方法。采用有限容积法(Finite Volume Method, FVM)离散宏观控制方程,并在多尺度分析的基础上,通过所发展的LB方法计算界面宏观守恒量通量,采用显式时间推进方法更新单元守恒变量,实现了不可压缩流动传热问题的求解。最后,采用方腔内部自然对流和同心圆环内部自然对流等两个经典算例验证了所发展热LBFS的计算能力与精度。

【Abstract】 Thermal lattice Boltzmann flux solver(LBFS) is an effective numerical method for thermal flows. In conventional thermal LBFS, the standard discrete velocity model(DVM) is adopted which limits the numerical efficiency. To address this issue, a novel thermal LBFS based on the simplified DVM is proposed. Firstly, a LB method for internal-energy-based energy equation is developed based on the D2Q5 DVM, which has less discrete velocities. In addition, the finite volume method(FVM) is employed to discretize the macroscopic governing equations. Through the multiscale analysis, the developed LB equation is applied to calculate the interface flux of control volume.In addition, the explicit time-stepping scheme is used to update the conserved quantities. As a result,the simplified-DVM-based thermal LBFS is established for incompressible flows with heat transfer.Finally, two benchmark examples, i.e., natural convection in a square cavity and natural convection in a concentric annulus, are adopted to validate numerical accuracy and efficiency of the proposed thermal LBFS.

【基金】 国家重点研发计划项目(No.2022YFB2405204);国家自然科学基金项目(No.52341601)的资助
  • 【文献出处】 工程热物理学报 ,Journal of Engineering Thermophysics , 编辑部邮箱 ,2024年11期
  • 【分类号】TK124
  • 【下载频次】24
节点文献中: 

本文链接的文献网络图示:

本文的引文网络