节点文献
基于多尺度时空卷积的唇语识别方法
Lipreading Method Based on Multi-Scale Spatiotemporal Convolution
【摘要】 现有的唇语识别模型大多采用将单层的3维卷积与2维卷积神经网络结合的方式,从唇语视频序列中挖掘出时空联合特征。然而,由于单层的3维卷积不能很好地提取时间信息,同时2维卷积神经网络对细粒度的唇语特征的挖掘能力有限,该文提出一种多尺度唇语识别网络(MS-LipNet)以改善唇语识别任务。该文在Res2Net网络中,采用3维时空卷积替代传统的2维卷积以更好地提取时空联合特征,同时提出时空坐标注意力模块,使网络关注于任务相关的重要区域特征。在LRW和LRW-1000数据集上进行实验,验证了所提方法的有效性。
【Abstract】 Most of the existing lipreading models use a combination of single-layer 3D convolution and 2D convolutional neural networks to extract spatio-temporal joint features from lip video sequences. However, due to the limitations of single-layer 3D convolutions in capturing temporal information and the restricted capability of 2D convolutional neural networks in exploring fine-grained lipreading features, a Multi-Scale Lipreading Network(MS-LipNet) is proposed to improve lip reading tasks. In this paper, 3D spatio-temporal convolution is used to replace traditional two-dimensional convolution in Res2Net network to better extract spatio-temporal joint features, and a spatio-temporal coordinate attention module is proposed to make the network focus on task-related important regional features. The effectiveness of the proposed method was verified through experiments conducted on the LRW and LRW-1000 datasets.
【Key words】 Lipreading; Multi-scale spatiotemporal convolutional network; Res2Net; Spatiotemporal coordinate attention; Data augmentation;
- 【文献出处】 电子与信息学报 ,Journal of Electronics & Information Technology , 编辑部邮箱 ,2024年11期
- 【分类号】TP391.41;TN912.34
- 【下载频次】83