节点文献
新型锂离子电池组导电带耐腐蚀性能研究
Research on corrosion resistance of conductive strip of new lithium-ion battery pack
【摘要】 为提高锂电池组导电带的耐腐蚀性能,以镍带为基础材料,经电沉积使镍带表面形成聚苯胺-石墨烯复合镀层,后进行盐水浸泡腐蚀试验与电化学测试,分析了电沉积时间对导电带耐腐蚀性能的影响。实验结果表明,镀层均匀致密,石墨烯分散均匀、连续性好。腐蚀电位随电沉积时间增加而正移,耐腐蚀性趋好。交流阻抗显示随着镀层厚度增厚,容抗弧半径增大,导电带的耐腐蚀性增强,说明聚苯胺-石墨烯镀层对镍带起到显著的防护作用。
【Abstract】 In order to improve the corrosion resistance of the conductive belt of the lithium battery pack, the nickel strip was formed as the basic material after the electrodeposition and electrochemical test, the influence of electrodeposition time on the corrosion resistance of the conductive belt was analyzed. The experimental results show that the coating is homogeneous and compact, and the graphene is evenly dispersed and has good continuity. The corrosion potential moves positively with the increase of the electrodeposition time, and the corrosion resistance becomes better. The AC impedance shows that with the thickness of the coating, the arc resistance radius increases, and the corrosion resistance of the conductive belt increases, indicating that the PANI-graphene coating plays a significant protective role on the nickel belt.
【Key words】 conductive band; polyphenylamine plated layer; corrosion resistance; electro-deposition;
- 【文献出处】 电镀与精饰 ,Plating and Finishing , 编辑部邮箱 ,2024年04期
- 【分类号】TQ153;TM912
- 【下载频次】266