节点文献

基于流形神经网络的协作频谱感知

Cooperative Spectrum Sensing Based on Manifold Neural Networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 袁豪王永华黄文平胡耀华王晓蕾

【Author】 YUAN Hao;WANG Yonghua;HUANG Wenping;HU Yaohua;WANG Xiaolei;School of Automation, Guangdong University of Technology;School of Electrical Engineering & Intelligentization, Dongguan University of Technology;Digital Grid Technology(Guangdong)Co., Ltd,China Southern Power Grid;

【通讯作者】 王永华;

【机构】 广东工业大学自动化学院东莞理工学院电信工程与智能化学院南方电网数字电网科技(广东)有限公司

【摘要】 针对传统频谱感知在复杂信号环境,如低信噪比和多路径衰落等情况下的性能局限,提出了一种基于黎曼流形神经网络的创新性协作频谱感知方案。该方法首先通过将多个协作用户的信号矩阵映射到黎曼流形上,生成具有几何特性的协方差矩阵。接着,利用黎曼流形神经网络进行高效的信号特征分类和频谱感知。黎曼流形神经网络不仅充分发挥了黎曼流形在非欧几里得数据结构上的优势,而且结合了神经网络强大的表达能力,从而在各种复杂环境下都展示出显著优越的频谱感知性能。通过一系列详细的仿真实验,证明了该方法在多样化环境下的优越性能,展示了其在实际无线通信系统中的潜在应用价值。

【Abstract】 This study proposes an innovative collaborative spectrum sensing scheme based on Riemannian manifold neural networks, addressing the performance limitations of traditional spectrum sensing in complex signal environments, such as low signal-to-noise ratios and multipath fading. The method initially maps the signal matrices from multiple collaborative users onto a Riemannian manifold, generating covariance matrices with geometric characteristics. Subsequently, Riemannian manifold neural networks are utilized for efficient signal feature classification and spectrum sensing. The Riemannian manifold neural networks not only fully leverage the advantages of Riemannian manifolds in non-Euclidean data structures, but also combine the powerful expressive capabilities of neural networks, thus demonstrating significantly superior spectrum sensing performance in various complex environments. A series of detailed simulation experiments validate the superior performance of this method in diverse environments, showcasing its potential application value in actual wireless communication systems.

【基金】 国家自然科学基金项目(61971147);广东省基础与应用基础研究基金(2023A1515011888)
  • 【文献出处】 东莞理工学院学报 ,Journal of Dongguan University of Technology , 编辑部邮箱 ,2024年03期
  • 【分类号】TN925;TP183
  • 【下载频次】16
节点文献中: 

本文链接的文献网络图示:

本文的引文网络