节点文献

基于改进Yolov5的LCD缺陷检测

LCD Defect Detection Based on Improved Yolov5

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 莫文星刘华珠

【Author】 MO Wenxing;LIU Huazhu;School of Computer Science and Technology, Dongguan University of Technology;International School of Microelectronics, Dongguan University of Technology;

【通讯作者】 刘华珠;

【机构】 东莞理工学院计算机科学与技术学院东莞理工学院国际微电子学院

【摘要】 为提高液晶显示屏缺陷检测的速度和精度,设计了一种基于深度学习的液晶显示屏缺陷检测系统。针对实时检测系统中的Yolov5检测算法存在对全局信息的提取能力不足问题,在Transformer架构和C3模块基础上构建了C3TR模块并将其加入Yolov5基础模型。实验结果表明,所提出的算法在准确率和召回率上分别达到了90.9%和90.3%,与Yolov5基础算法相比分别提高了4.1%和1.4%。

【Abstract】 In order to improve the speed and accuracy of LCD defect detection, this paper designs an system for LCD defect detection based on deep learning. Aiming at the problem that the Yolov5 detection algorithm in the real-time detection system has insufficient ability to extract global information, this paper constructs the C3TR module based on the Transformer architecture and C3 module and adds it to the Yolov5 basic model. Experimental results show that the proposed algorithm reaches 90.9% and 90.3% in accuracy and recall, respectively, which is improved by 4.1% and 1.4% compared with Yolov5 basic algorithm, respectively.

【关键词】 深度学习缺陷检测液晶显示屏Yolo
【Key words】 deep learningdefect detectionLCD displayYolo
【基金】 东莞市科技特派员项目(20221800500112)
  • 【文献出处】 东莞理工学院学报 ,Journal of Dongguan University of Technology , 编辑部邮箱 ,2024年01期
  • 【分类号】TP391.41;TN873.93
  • 【下载频次】375
节点文献中: 

本文链接的文献网络图示:

本文的引文网络