节点文献

无人车U型转向路况的轨迹规划与控制研究

Trajectory Planning and Control of Unmanned Vehicles in U-Shaped Steering Road Conditions

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 田国富郑佳强常天根张森

【Author】 TIAN Guofu;ZHENG Jiaqiang;CHANG Tiangen;ZHANG Sen;School of Mechanical Engineering, Shenyang University of Technology;

【机构】 沈阳工业大学机械工程学院

【摘要】 针对无人车在双向单车道下的U型转向场景,基于空间分布关系与正反梯形加速度提出一种U型转向轨迹规划方法。该方法首先结合车辆空间分布特征规划出一条U型转向轨迹,并采用线性插值方法平滑该轨迹;然后,采用正反梯形的侧向加速度规划方法,通过设计多目标函数,求出侧向加速度和侧向加速度变化率的最优解;最后,提出一种基于车辆空间分布关系的改进Stanley控制算法,并通过在输入函数中添加稳态误差惩罚项使轨迹误差收敛于0。仿真结果表明:相比于Stanley控制算法,该控制方法在不同初始车速下最大横向轨迹误差与最大航向角误差均有改善。驾驶员在环试验结果表明:该方法可以有效地完成U形转向。

【Abstract】 Aiming at the U-shaped steering scenario of unmanned vehicles on two-way single lane, a U-shaped steering trajectory planning method was proposed based on the spatial distribution relationship and forward and reverse trapezoidal acceleration. In this method, a U-shaped steering trajectory was planned firstly according to the spatial distribution characteristics of vehicles, and the linear interpolation method was then used to smooth the trajectory. Then, the lateral acceleration programming method of forward and reverse trapezoid was used to design the multi-objective function to obtain the optimal solution of lateral acceleration and lateral acceleration change rate. Finally, an improved Stanley control method based on the spatial distribution relationship of vehicles was proposed, and the trajectory error converged to 0 by adding a steady-state error penalty term into the input function. The simulation results show that compared with the Stanley method, both the maximum lateral trajectory error and the maximum heading angle error of the proposed control method are improved at different initial speeds. The results of driver-in-the-loop experiments show that the proposed method can effectively complete the U-shaped steering.

【基金】 国家自然科学基金项目(52375258)
  • 【文献出处】 重庆交通大学学报(自然科学版) ,Journal of Chongqing Jiaotong University(Natural Science) , 编辑部邮箱 ,2024年12期
  • 【分类号】U463.6
  • 【下载频次】16
节点文献中: 

本文链接的文献网络图示:

本文的引文网络