节点文献
异质梯度纳米结构金属的研究现状
Research Status of Heterogeneous Gradient Nanostructured Metals
【摘要】 强度-塑性倒置普遍存在于传统均匀或随机微观结构的金属材料,而梯度纳米结构材料由于其晶粒尺寸呈梯度变化,变形过程中不同特征尺寸的结构相互协调,使其具有优异的综合力学性能。近年来,由不同性质的非均质区域构成异质结构的设计理论、制备方法和变形机理逐步完善。本文总结了梯度结构、双峰结构、谐波结构、异质层状结构、分散纳米域和层状纳米孪晶结构等异质结构金属材料的分类及制备方法。结合梯度纳米结构金属在应力加载过程中非均匀塑性变形行为,总结其强塑性机制,包括梯度塑性、几何必须位错、机械驱动的晶粒粗化、表面残余应力和表面扰动和剪切带行为等,并讨论其未来发展所面临的挑战。
【Abstract】 The strength-plastic inversion generally exists in the traditional metals with uniform or random microstructure, while the gradient nanostructured metals exhibit excellent comprehensive mechanical properties due to the gradient change of grain size and the coordination of different characteristic sizes during deformation. In recent years, the design theory, preparation method and deformation mechanism of the heterostructures composed of heterogeneous regions with different properties have been gradually improved. In this paper, the classification and preparation methods of heterostructure metals, such as gradient structure, bimodal structure, harmonic structure, heterogeneous layered structure, dispersed nano-domain and layered nano-twin structure, were summarized. Combined with the non-uniform plastic deformation behavior of gradient nanostructured metal during stress loading, the strengthening and toughening mechanisms of gradient nanostructured metal were summarized, including gradient plasticity, geometrically necessary dislocation,mechanically driven grain coarsening, surface residual stress, surface disturbance and shear band behavior, and the challenges of its future development were discussed.
【Key words】 heterogeneous structure materials; gradient nanostructures; mechanical properties; preparation methods;
- 【文献出处】 稀有金属材料与工程 ,Rare Metal Materials and Engineering , 编辑部邮箱 ,2024年04期
- 【分类号】TG14
- 【下载频次】16