节点文献

基于Stacking融合的LSTM-SA-RBF短期负荷预测

Stacking fusion based LSTM-SA-RBF short-term load forecasting

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 方娜邓心肖威

【Author】 FANG Na;DENG Xin;XIAO Wei;School of Electrical and Electronic Engineering, Hubei University of Technology;

【机构】 湖北工业大学电气与电子工程学院

【摘要】 为了解决单个神经网络预测的局限性和时间序列的波动性,提出了一种奇异谱分析(singular spectrum analysis, SSA)和Stacking框架相结合的短期负荷预测方法。利用随机森林筛选出与历史负荷相关性强烈的特征因素,采用SSA为负荷数据降噪,简化模型计算过程;基于Stacking框架,结合长短期记忆(long and short-term memory, LSTM)-自注意力机制(self-attention mechanism, SA)、径向基(radial base functions, RBF)神经网络和线性回归方法集成新的组合模型,同时利用交叉验证方法避免模型过拟合;选取PJM和澳大利亚电力负荷数据集进行验证。仿真结果表明,与其他模型比较,所提模型预测精度高。

【Abstract】 To avoid the limitations of individual neural network forecasting and the volatility of time series, this paper proposes a short-term load forecasting model combining singular spectrum analysis(SSA) and stacking framework.First, the strong correlation characteristic factors with historical load are screened by random forest and SSA to reduce noise for load data and simplify the model calculation process.Second, based on the stacking framework, a new combined model is integrated with long-and short-term memory(LSTM)self-attention mechanism(SA), radial base functions(RBF) neural network and linear regression methods, and cross-validation is employed to avoid model over-fitting.Finally, the PJM and Australian electricity load datasets are adopted for validation. Our simulation results show the proposed model achieves higher prediction accuracy compared with other models.

【基金】 国家自然科学基金青年科学基金项目(51809097);湖北省重点研发计划项目(2021BAA193)
  • 【文献出处】 重庆理工大学学报(自然科学) ,Journal of Chongqing University of Technology(Natural Science) , 编辑部邮箱 ,2024年04期
  • 【分类号】TP183;TM715
  • 【下载频次】25
节点文献中: 

本文链接的文献网络图示:

本文的引文网络